《难点解析京改版八年级数学下册第十五章四边形同步训练练习题(精选).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十五章四边形同步训练练习题(精选).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大3
2、60D内角和与外角和相等2、如图,在中,ACB90,AB10,CD是AB边上的中线,则CD的长是( )A20B10C5D23、平面直角坐标系内与点P关于原点对称的点的坐标是( )ABCD4、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A三角形B四边形C五边形D六边形5、如图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D406、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BECF2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()ABC4.5D4.37、下列各曲线是在平面直角坐标系xOy中
3、根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD8、下列四个图形中,为中心对称图形的是()ABCD9、如图,A+B+C+D+E+F的度数为()A180B360C540D不能确定10、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在数轴上,以单位长度为边长画一个正方形,点A对应的数是1,以点A为圆心,正方形对角
4、线AB为半径画圆,圆与数轴的交点对应的数是 _2、如图,在矩形中,点是线段上的一点(不与点,重合),将沿折叠,使得点落在处,当为等腰三角形时,的长为_3、若点关于原点的对称点是,则_4、如图,在中,为上的两个动点,且,则的最小值是_5、如图,直线l1l3,l2l3,垂足分别为P、Q,一块含有45的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ等于,则OQ的长等于 _三、解答题(5小题,每小题10分,共计50分)1、(1)如图1中,A90,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹)(2)已知内角度数的两个三角形如
5、图2、图3所示请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数(3)一个三角形有一内角为48,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为 2、在如图所示的43网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段点A固定在格点上(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a ,b , ;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , 3、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE
6、,DF证明BE=DF4、如图,平行四边形ABCD中,对角线AC、BD相交于点O,ABAC,AB=3,AD=5,求BD的长5、在中,斜边,过点作,以AB为边作菱形ABEF,若,求的面积-参考答案-一、单选题1、D【分析】直接利用多边形内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360,故本选项表述错误;B四边形的内角和与外角和相等,都等于360,故本选项表述错误;C六四边形的内角和与外角和相等,都等于360,故本选项表述错误;D四边形的内角和与外角和相等,都等于360,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和
7、都是3602、C【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长【详解】解:在中,AB=10,CD是AB边上的中线故选:C【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半3、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可【详解】解:由题意,得点P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐
8、标都互为相反数4、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形故选:A【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理5、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的
9、关键6、A【分析】根据正方形的四条边都相等可得BCDC,每一个角都是直角可得BDCF90,然后利用“边角边”证明CBEDCF,得BCECDF,进一步得DHCDHE90,从而知GHDE,利用勾股定理求出DE的长即可得出答案【详解】解:四边形ABCD为正方形,BDCF90,BCDC,在CBE和DCF中,CBEDCF(SAS),BCECDF,BCE+DCH90,CDF+DCH90,DHCDHE90,点G为DE的中点,GHDE,ADAB6,AEABBE624,GH故选A【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求
10、解7、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键8、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以是中心对称图形;选项A、C、D不能找到这样的一个点,使图形绕某一
11、点旋转180后与原来的图形重合,所以不是中心对称图形;故选:B【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心9、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360是解题的关键10、D【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等
12、三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:42=2s,v的值为:42=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,52=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是
13、解题的关键二、填空题1、或【分析】根据正方形的面积公式得出面积为1,根据正方形面积公式为对角线AB乘积的一半求出正方形的对角线长,利用点A的位置,得出圆与数轴的交点对应的数即可【详解】解:以单位长度为边长画一个正方形,正方形面积为1,AB=,点A在1的位置,圆与数轴的交点对应的数为或故答案为或【点睛】本题考查数轴上点表示数,正方形性质,算术平方根,图形旋转,掌握数轴上点表示数,正方形性质,图形旋转特征是解题关键2、或【分析】根据题意分,三种情况讨论,构造直角三角形,利用勾股定理解决问题【详解】解:四边形是矩形,将沿折叠,使得点落在处,设,则当时,如图过点作,则四边形为矩形,在中在中即解得当时,
14、如图,设交于点,设垂直平分在中即在中,即联立,解得当时,如图,又垂直平分垂直平分此时重合,不符合题意综上所述,或故答案为:或【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键3、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:由关于坐标原点的对称点为,得,解得:故答案为:【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数4、【分析】过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A,连接AA交BC于
15、点O,连接AM,三点D、M、A共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题【详解】解:过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,MDAN,ADMN,作点A关于BC的对称点A,连接A A交BC于点O,连接AM,则AMAM,AMANAMDM,三点D、M、A共线时,AMDM最小为AD的长,AD/BC,AOBC,DA90,BCBOCOAO,在RtAD中,由勾股定理得:D的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键5、【分析】由“AAS”可证ACPCBQ,
16、可得APCQ,PCBQ,由“AAS”可证APOBHO,可得APBH,OPOH,由等腰直角三角形的性质和直角三角形的性质可求解【详解】解:如图,连接PO,并延长交l2于点H,l1l3,l2l3,l1l3,APCBQCACB90,PAC+ACP90ACP+BCQ,PACBCQ,在ACP和CBQ中,ACPCBQ(AAS),APCQ,PCBQ,PC+CQAP+BQPQ,APBQ,OAPOBH,点O是斜边AB的中点,AOBO,在APO和BHO中,APOBHO(AAS),APBH,OPOH,BH+BQAP+BQPQ,PQQH,PQH90,PHPQ12,OPOH,PQH90,OQPH6故答案为:6【点睛】本
17、题主要考查了全等三角形的判定和性质,等腰三角形和直角三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形和直角三角形的性质定理是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)108【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,作BC的垂直平分线即可确定点E,连接AE即可;(2)分别以24为底角,可分割出两个等腰三角形;(3)利用图1、2、3中三角形内角之间的关系进行判断【详解】解:(1)如图,作BC的垂直平分线交BC于E,连接AE,则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:当三角形是直角三角形时,肯定可以分割成两个等腰三角形,此
18、时最大角为90;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99;如图3,此时最大角为108综上所述:最大角为108,故答案为:108【点睛】本题主要考查垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质,熟练掌握垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质是解题的关键2、(1),2,;(2)4或5【分析】(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;(2)根据要求周长边长为的菱形即可【详解】解:(1)由题意得:a=,b=2,;故答案为:,2,;(2)如图1,2中,菱形ABCD即为所求菱形ABCD的面积为=42=4或菱形AB
19、CD的面积=5,故答案为:4或5【点睛】本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题3、见详解【分析】由题意易得AB=CD,ABCD,AE=CF,则有BAE=DCF,进而问题可求证【详解】证明:四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF,E,F是对角线AC的三等分点,AE=CF,在ABE和CDF中,ABECDF(SAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键4、【分析】根据平行四边形的性质可得,勾股定理求得,进而求
20、得【详解】解:四边形是平行四边形 ABAC,在中,在中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键5、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,在中, ,根据题意,根据平行线间的距离处处相等, .答:的面积为.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键