《精品试题沪教版(上海)七年级数学第二学期第十三章相交线-平行线定向练习练习题(精选含解析).docx》由会员分享,可在线阅读,更多相关《精品试题沪教版(上海)七年级数学第二学期第十三章相交线-平行线定向练习练习题(精选含解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十三章相交线 平行线定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在直角三角形ABC中,BAC90,ADBC于点D,则下列说法错误的是()A线段AC的长度表示点C到AB
2、的距离B线段AD的长度表示点A到BC的距离C线段CD的长度表示点C到AD的距离D线段BD的长度表示点A到BD的距离2、下列各图中,1与2是对顶角的是()ABCD3、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )A千米B千米C千米D千米4、下列说法中,正确的是()A从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B互相垂直的两条直线不一定相交C直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD过一
3、点有且只有一条直线垂直于已知直线5、如图,直线AB与CD相交于点O,OE平分AOC,且BOE140,则BOC为()A140B100C80D406、如图,ABEF,则A,C,D,E满足的数量关系是( )AA+C+D+E360BA+DC+ECAC+D+E180DEC+DA907、下列说法中正确的有( )一条直线的平行线只有一条过一点与已知直线平行的直线只有一条因为ab,cd,所以ad经过直线外一点有且只有一条直线与已知直线平行A1个B2个C3个D4个8、如图所示,将一张长方形纸片沿折叠,使顶点、分别落在点、处,交于点,则( )A20B40C70D1109、如图,已知直线,相交于O,平分,则的度数是
4、( )ABCD10、如图,能与构成同位角的有( )A4个B3个C2个D1个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图将一条两边互相平行的纸带按如图折叠,若EFGEGD=150,则EGD=_2、如图,把一条两边边沿互相平行的纸带折叠,若,则_3、已知三条不同的直线a,b,c在同一平面内,下列四个命题:如果ab,ac,那么bc; 如果ba,ca,那么bc;如果ba,ca,那么bc;如果ba,ca,那么bc其中正确的是_(填写序号)4、如图,已知,CE平分,则_5、如图,长方形纸片ABCD中ADBC,ABCD,A90,将纸片沿EF折叠,使顶点C、D分别落在点C、D处
5、,CE交AF于点G若CEF68,则么GFD_三、解答题(10小题,每小题5分,共计50分)1、如图,直线AB与CD相交于点O,OC平分BOE,OFCD,垂足为点O(1)写出AOF的一个余角和一个补角(2)若BOE60,求AOD的度数(3)AOF与EOF相等吗?说明理由2、如图,ABDG,1+2180(1)试说明:ADEF;(2)若DG是ADC的平分线,2142,求B的度数3、感知与填空:如图,直线ABCD求证:B+D=BED证明:过点E作直线EFCD,2=_,( )ABCD(已知),EFCD_EF,( )B=1,( )1+2=BED,B+D=BED,( )方法与实践:如图,直线ABCD若D=5
6、3,B=22,则E=_度4、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C画AD的平行线CE;(2)过点B画CD的垂线,垂足为F5、小明同学遇到这样一个问题:如图,已知:ABCD,E为AB、CD之间一点,连接BE,ED,得到BED求证:BEDB+D小亮帮助小明给出了该问的证明证明:过点E作EFAB则有BEFBABCDEFCDFEDDBEDBEF+FEDB+D请你参考小亮的思考问题的方法,解决问题:(1)直线l1l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2
7、上,猜想:如图,若点P在线段CD上,PAC15,PBD40,求APB的度数(2)拓展:如图,若点P在直线EF上,连接PA、PB(BDAC),直接写出PAC、APB、PBD之间的数量关系6、如图,CDAB于D,点F是BC上任意一点,FEAB于E,且1=2,B=60试求ADG的度数7、如图,在ABC中,DEAC,DFAB(1)判断A与EDF之间的大小关系,并说明理由(2)求A+B+C的度数8、已知,直线AB、CD交于点O,EOAB,EOC:BOD7:11(1)如图1,求DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125的角9、如图,P为,之间的一点,已知,求1
8、的度数10、请把下列证明过程及理由补充完整(填在横线上):-参考答案-一、单选题1、D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可【详解】解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断2、B【分析】根据对顶角的定义作出判断即可【详解】解:根据对顶角的定义可知:只有B选项的是对顶角,
9、其它都不是故选:B【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角3、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解【详解】解:根据两直线平行,内错角相等,可得ABG48,ABC180ABGEBC180484290,ABBC,A地到公路BC的距离是AB8千米,故选B【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想4、C【分析】根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D
10、,从而完成求解【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解5、B【分析】根据平角的意义求出AOE,再根据角平分线的定义得出AOE=COE,由角的和差关系可得答案【详解】解:AOE+BOE180,AOE180BO
11、E18014040,又OE平分AOC,AOECOE40,BOCBOECOE14040100,故选:B【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键6、C【分析】如图,过点C作CGAB,过点D作DHEF,根据平行线的性质可得AACG,EDH180E,根据ABEF可得CGDH,根据平行线的性质可得CDHDCG,进而根据角的和差关系即可得答案【详解】如图,过点C作CGAB,过点D作DHEF,AACG,EDH180E,ABEF,CGDH,CDHDCG,ACDACG+CDHA+CDE(180E),AACD+CDE+E180故选:C【点睛】本题考
12、查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键7、A【分析】根据平行线的性质,平行线的判定判断即可【详解】一条直线的平行线有无数条,的说法不正确;经过直线外一点有且只有一条直线与已知直线平行,的说法不正确,的说法正确;ab,cd,无法判定ad的说法不正确只有一个是正确的,故选A【点睛】本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键8、B【分析】根据题意可得,再由折叠的性质得到,即可得解;【详解】,由折叠可知:,则;故选B【点睛】本题主要考查了折叠问题,平行线的性
13、质,准确计算是解题的关键9、C【分析】先根据角平分线的定义求得AOC的度数,再根据邻补角求得BOC的度数即可【详解】解:OA平分EOC,EOC100,AOCEOC50,BOC180AOC130故选:C【点睛】本题考查角平分线的有关计算,邻补角能正确识图是解题关键10、B【分析】根据同位角的定义判断即可;【详解】如图,与能构成同位角的有:1,2,3故选B【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键二、填空题1、【分析】先根据平行线的性质得到,结合已知EFGEGD=150,解得EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题【详解】解:EFGE
14、GD=150,EGD=折叠故答案为:【点睛】本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键2、62【分析】如图,根据平行线的性质可得,根据折叠的性质可得,再利用平角等于180,据此求解即可【详解】解:纸片两边平行,由折叠的性质可知,=62故答案为:62【点睛】本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点3、【分析】根据两直线的位置关系一一判断即可【详解】解:在同一个平面内,如果ab,ac,那么bc,正确;如果ba,ca,那么bc,正确;如果ba,ca,那么bc,错误;如果ba,ca,那么bc,正确;故答案为:【点睛】本题考查两
15、直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行4、65【分析】由平行线的性质先求解再利用角平分线的定义可得答案.【详解】解: , , CE平分, 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.5、44【分析】根据平行线的性质和翻折不变性解答【详解】解:ADBC,DFE180CEF18068112,DFE112,GFE18011268,GFD1126844故答案为:44【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形三、解答题1、(1)AOF的余角是:COE或BOC或AOD;AOF的
16、补角是BOF;(2)30;(3)AOF=EOF,理由见解析【分析】(1)由OCCD,可得DOF=90,则AOF+AOD=90,由对顶角相等得BOC=AOD,则AOF+BOC=90,由OC平分BOE,可得COE=BOC,AOF+COE=90;由AOF+BOF=180,可得AOF的补角是BOF;(2)由OC平分BOE,BOE=60,可得BOC=30,再由AOD=BOC,即可得到AOD=30;(3)由(1)可得AOD=BOC=COE,再由OFOC,得到DOF=COF=90,则AOD+AOF=EOF+COE=90,即可推出AOF=EOF【详解】解:(1)OCCD,DOF=90,AOF+AOD=90,又
17、BOC=AOD,AOF+BOC=90,OC平分BOE,COE=BOC,AOF+COE=90;AOF的余角是,COE,BOC,AOD;AOF+BOF=180,AOF的补角是BOF;(2)OC平分BOE,BOE=60,BOC=30,又AOD=BOC,AOD=30;(3)AOF=EOF,理由如下:由(1)可得AOD=BOC=COE,OFOC,DOF=COF=90,AOD+AOF=EOF+COE=90,AOF=EOF【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180
18、度,那么这两个角互补2、(1)见解析;(2)B38【分析】(1)由ABDG,得到BAD1,再由1+2180,得到BAD+2180,由此即可证明;(2)先求出138,由DG是ADC的平分线,得到CDG138,再由ABDG,即可得到BCDG38【详解】(1)ABDG,BAD1,1+2180,BAD+2180.ADEF . (2)1+2180且2142,138,DG是ADC的平分线,CDG138,ABDG,BCDG38【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键3、D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行
19、;两直线平行,内错角相等;等量代换;31【分析】过点E作直线EF/CD,由两直线平行,内错角相等得出2=D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB/EF;由两直线平行,内错角相等得出B=1;由1+2=BED,等量代换得出B+D=BED;方法与实践:如图,由平行的性质可得BOD=D=53,然后再根据三角形外角的性质解答即可【详解】解:过点E作直线EFCD,2=D,(两直线平行,内错角相等)ABCD(已知),EFCDAB/EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)B=1,(两直线平行,内错角相等)1+2=BED,B+D=BED,(等量代换 )方法与实践:如图
20、,直线ABCDBOD=D=53BOD=E+BE=BOD-B=53- 22=31故答案依次为:D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31【点睛】本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键4、(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可(2)根据要求作出图形即可【详解】解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,如图,直线CE即为所求作(2)根据题意得:CD是长为6
21、,宽为3的长方形的对角线,所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,如图,直线BF即为所求作【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键5、(1)55;(2)当P在线段CD上时,APB=PAC +PBD;当P在DC延长线上时,APB=PBD-PAC;当P在CD延长线上时,APB=PAC-PBD;【分析】(1)过点P作PGl1,可得APG=PAC=15,由l1l2,可得PGl2,则BPG=PBD=40,即可得到APB=APG+BPG=55;(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可【详解】
22、解:(1)如图所示,过点P作PGl1,APG=PAC=15,l1l2,PGl2,BPG=PBD=40,APB=APG+BPG=55;(2)由(1)可得当P在线段CD上时,APB=PAC +PBD;如图1所示,当P在DC延长线上时,过点P作PGl1,APG=PAC,l1l2,PGl2,BPG=PBD=40,APB=BPG-APG=PBD-PAC;如图2所示,当P在CD延长线上时,过点P作PGl1,APG=PAC,l1l2,PGl2,BPG=PBD=40,APB=APG-BPG=PAC-PBD;综上所述,当P在线段CD上时,APB=PAC +PBD;当P在DC延长线上时,APB=PBD-PAC;当
23、P在CD延长线上时,APB=PAC-PBD【点睛】本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质6、60【分析】由CDAB,FEAB,则,则24,从而证得,得BADG,则答案可解【详解】解:CDAB于D,FEAB于E,24,又1=2,14,【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用7、(1)两角相等,见解析;(2)180【分析】(1)根据平行线的性质得到A=BED,EDF=BED,即可得到结论;(2)根据平行线的性质得到C=EDB,B=FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:DEAC,
24、A=BED(两直线平行,同位角相等).DFAB,EDF=BED(两直线平行,内错角相等),A=EDF(等量代换).(2)DEAC,C=EDB(两直线平行,同位角相等).DFAB,B=FDC(两直线平行,同位角相等).EDB+EDF+FDC=180,A+B+C=180(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键8、(1)145;(2)图中度数为125的角有:EOM,BOC,AOD【分析】(1)由EOAB,得到BOE=90,则COE+BOD=90,再由EOC:BOD7:11,求出COE=35,BOD=55,则DOE=BOD+BOE=145;(2)由MNCD,得到C
25、OM=90,则EOM=COE+COM=125,再由BOD=55,得到BOC=180-BOD=125,则AOD=BOC=125【详解】解:(1)EOAB,BOE=90,COE+BOD=90,EOC:BOD7:11,COE=35,BOD=55,DOE=BOD+BOE=145;(2)MNCD,COM=90,EOM=COE+COM=125,BOD=55,BOC=180-BOD=125,AOD=BOC=125,图中度数为125的角有:EOM,BOC,AOD【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义9、30【分析】首先过点P作射线,根据两直线平行,内错角相等,
26、即可求得答案【详解】过点P作射线,如图,又 【点睛】此题考查了平行线的判定与性质平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系10、CAD;两直线平行,内错角相等;CAD;等量代换;等式的性质;CAD;等量代换;同位角相等,两直线平行【分析】根据ADBC,可得3CAD,从而得到4CAD,再由12,可得BAFCAD从而得到4BAF即可求证【详解】证明:ADBC(已知),3CAD(两直线平行,内错角相等)34(已知),4CAD(等量代换)12(已知),1+CAF2+CAF(等式的性质)即BAFCAD4BAF(等量代换)ABCD(同位角相等,两直线平行)【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键