精品试卷沪教版七年级数学第二学期第十四章三角形综合测试试题(精选).docx

上传人:可****阿 文档编号:32650147 上传时间:2022-08-09 格式:DOCX 页数:34 大小:820.09KB
返回 下载 相关 举报
精品试卷沪教版七年级数学第二学期第十四章三角形综合测试试题(精选).docx_第1页
第1页 / 共34页
精品试卷沪教版七年级数学第二学期第十四章三角形综合测试试题(精选).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《精品试卷沪教版七年级数学第二学期第十四章三角形综合测试试题(精选).docx》由会员分享,可在线阅读,更多相关《精品试卷沪教版七年级数学第二学期第十四章三角形综合测试试题(精选).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:如图,D、E分别在AB、AC上,若ABAC,ADAE,A60,B25,则BDC的度数是()A95B90C

2、85D802、如图,A,DBC3DBA,DCB3DCA,则BDC的大小为( )ABCD3、如图,在中,AD是角平分线,且,若,则的度数是( )A45B50C52D584、如图,在ABC和DEF中,AD,AFDC,添加下列条件中的一个仍无法证明ABCDEF的是()ABCEFBABDECBEDACBDFE5、如图,等腰ABC中,ABAC,点D是BC边中点,则下列结论不正确的是( )ABCBADBCCBADCADDAB2BC6、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D197、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一

3、样的三角形他的依据是( )ABCD8、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )ABCD9、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )ABCD10、已知等腰三角形有一个角为50,则这个等腰三角形的底角度数是( )A65B65或80C50或80D50或65第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是_2、在平面直角坐标系中,点B(0,4),点A为x轴上一动点,连接A

4、B以AB为边作等腰RtABE,(B、A、E按逆时针方向排列,且BAE为直角),连接OE当OE最小时,点E的纵坐标为_3、小华的作业中有一道数学题:“如图,AC,BD在AB的同侧,BD4,AB4,AC=1,CED=120,点E是AB的中点,求CD的最大值”哥哥看见了,提示他将ACE和BDE分别沿CE,连接AB最后小华求解正确,得到CD的最大值是 _4、如图,把ABC绕点C顺时针旋转某个角度得到,A30,170,则旋转角的度数为_5、如图,把两块大小相同的含45的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且CFE13,CFD32,则DEC的度数为_三、解答题(10小题

5、,每小题5分,共计50分)1、已知:如图,在ABC中,AB3,AC5(1)直接写出BC的取值范围是 (2)若点D是BC边上的一点,BAC85,ADC140,BADB,求C2、如图,在中,BD是的角平分线,点E在AB边上,求的周长3、直线l经过点A,在直线l上方,(1)如图1,过点B,C作直线l的垂线,垂足分别为D、E求证:(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE直线l与CE交于点G求证:G是CE的中点4、如图,在

6、四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:DECBAE;(2)如图2,当BAECAD30,ADAB时,延长DE、AB交于点G,请直接写出图中除ABE、ADC以外的等腰三角形5、已知,如图,ABAD,BD,1260 (1)求证:ADEABC; (2)求证:AECE6、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、(1)求证:;(2)若的面积为8,的面积为6,求的面积7、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,P为上一点,当_时,与是偏等积三角形;(2)如图2,四边形是一片绿色花园,、是等腰直

7、角三角形,与是偏等积三角形吗?请说明理由;已知的面积为如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G若小路每米造价600元,请计算修建小路的总造价8、如图,E为BC中点,DE平分(1)求证:平分;(2)求证:;(3)求证:9、如图,点A,B,C,D在一条直线上,求证:10、阅读填空,将三角尺(MPN,MPN=90)放置在ABC上(点P在ABC内),如图所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究ABP与ACP是否存在某种数量关系(1)特例探索:若A=50,则PBC+PCB= 度,ABP+ACP= 度(2)类比探索:ABP、ACP、A的关系是 (3)变式探索

8、:如图所示,改变三角尺的位置,使点P在ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则ABP、ACP、A的关系是 -参考答案-一、单选题1、C【分析】根据SAS证ABEACD,推出CB,求出C的度数,根据三角形的外角性质得出BDCA+C,代入求出即可【详解】解:在ABE和ACD中,ABEACD(SAS),CB,B25,C25,A60,BDCA+C85,故选C【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件2、A【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:A,

9、DBC3DBA,DCB3DCA,设,即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键3、A【分析】根据角平分线性质求出DCA,再根据等腰三角形的性质和三角形的内角和定理求解C和B即可【详解】解:AD是角平分线,DCA=30,AD=AC,C=(180DCA)2=75,B=180BACC=1806075=45,故选:A【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键4、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可【详解】解:AF=DC,AF+FC=DC+FC,即AC=DF,A、B

10、C=EF,AC=DF,A=D,不符合全等三角形的判定定理,不能推出ABCDEF,故本选项符合题意;B、AB=DE,A=D,AC=DF,符合全等三角形的判定定理SAS,能推出ABCDEF,故本选项不符合题意;CB=E,A=D,AC=DF,符合全等三角形的判定定理AAS,能推出ABCDEF,故本选项不符合题意;DACB=DFE,AC=DF,A=D,符合全等三角形的判定定理ASA,能推出ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL5、D【

11、分析】根据等腰三角形的等边对等角的性质及三线合一的性质判断【详解】解:ABAC,点D是BC边中点,BC,ADBC,BADCAD,故选:D【点睛】此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键6、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种

12、情况是否能构成三角形,这是解题的关键7、C【分析】根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形【详解】根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,根据两个三角形对应的两角及其夹边相等,两个三角形全等,即故选C【点睛】本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键8、B【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论【详解】解:由三角形内角和知BAC=180-2-1,AE为BAC的平分线,BAE=BAC=(180-2-1)AD为BC边上的高,ADC=90=DAB+ABD又ABD=18

13、0-2,DAB=90-(180-2)=2-90,EAD=DAB+BAE=2-90+(180-2-1)=(2-1)故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系9、C【分析】根据三角形的三边关系可得,再解不等式可得答案【详解】解:设三角形的第三边为,由题意可得:,即,故选:C【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边10、D【分析】可以是底角,也可以是顶角,分情况讨论即可【详解】当角为底角时,底角就是,当角为等腰三角形的顶角时,底角为,因此

14、这个等腰三角形的底角为或故选:D【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键二、填空题1、三角形两边之和大于第三边【分析】表示出和四边形BDEC的周长,再结合中的三边关系比较即可【详解】解:的周长=四边形BDEC的周长=在中即的周长一定大于四边形BDEC的周长,依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点2、2【分析】过E作EFx轴于F,由三垂直模型,得EFOA,AFOB,设A(a,0),可求得E(a4,a

15、),点E在直线yx4上,当OECD时,OE最小,据此求出坐标即可【详解】解:如图,过E作EFx轴于F,AOB=EFA=BAE=90,ABO+OAB=90,EAF+OAB=90,ABO=EAF,AB=AE,ABOEAF,EFOA,AFOB4,取点C(4,0),点D(0,-4),OCD=45,CF4- OF,OA4- OF,CFOA EF,ECF=45,点E在直线CD上,当OECD时,OE最小,此时EFO和ECO为等腰Rt,OFEF2,此时点E的坐标为:(2,2) 故答案为:-2【点睛】本题考查了全等三角形的判定与性质,解题关键是确定点E运动的轨迹,确定点E的位置3、7【分析】由翻折的性质可证EB

16、A是等边三角形,则ABAE2,再根据CDAC+AB+BD,即可求出CD的最大值【详解】解:AB=4,点E为AB的中点,AE=BE=2,CED=120,AEC+DEB=60,将ACE和BDE分别沿CE,DE翻折得到ACE和BDE,AC=AC=1,AE=AE=2,AEC=CEA,DB=DB=4,BE=BE=2,DEB=DEB,AEB=60,AE=BE=2,EBA是等边三角形,AB=AE=2,当点C,点A,点B,点D四点共线时,CD有最大值=AC+AB+BD=7,故答案为:7【点睛】本题主要考查了翻折的性质,等边三角形的判定与性质,两点之间,线段最短等性质,证明EBA是等边三角形是解题的关键4、#【

17、分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把ABC绕点C顺时针旋转某个角度得到,A30, 170, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.5、【分析】作FH垂直于FE,交AC于点H,可证得,由对应边、对应角相等可得出,进而可求出,则【详解】作FH垂直于FE,交AC于点H,又,FA=CFFH=FE又DF=DF故答案为:【点睛】本题考查了等腰三角形的性质,全等三角形的判定及其性质,作辅助线HF垂直于FE是解题的关键三、解答题1、(1)2BC8;(2)25【分析】(1)根据三角形三边关系解答即可;(2)根据

18、三角形外角性质和三角形内角和解答即可【详解】解:(1)AC-ABBCAC+AB,AB3,AC52BC8,故答案为:2BC8(2)ADC是ABD的外角ADCB+BAD140BBADBB+BAC+C180C180BBAC即C180708525【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出B的度数是解此题的关键2、【分析】由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.【详解】解:,,BD是的角平分线,,在和中,,,的周长.【点睛】本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及

19、角平分线性质进行边的等量替换是解题的关键.3、(1)见解析;(2)猜想:,见解析;(3)见解析【分析】(1)先证明和,再根据证明即可;(2)根据AAS证明得,进一步可得出结论;(3)分别过点C、E作,同(1)可证,得出CM=EN,证明得,从而可得结论【详解】解:(1)证明:,在与中,(2)猜想:,在与中,(3)分别过点C、E作,同(1)可证, 在与中,G为CE的中点【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得ABDCAE是解决问题的关键4、(1)见解析;(2)AEF、ADG、DCF、ECD【分析】(1)根据已知条件得到BAECAD,根据全等三角形的性质得到AEDAB

20、C,根据等腰三角形的性质得到ABCAEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论【详解】证明:(1)如图1,BAECAD, BAECAECADCAE,即BACEAD,在AED与ABC中,AEDABC,AEDABC,BAEABCAEB180,CEDAEDAEB180,ABAE,ABCAEB,BAE2AEB180,CED2AEB180,DECBAE;(2)解:如图2, BAECAD30,ABCAEBACDADC75,由(1)得:AEDABC75,DECBAE30,ADAB,BAD90,CAE30,AFE180307575,AEFAFE, AEF是等腰三角形, BEGDEC30,A

21、BC75,G45,在RtAGD中,ADG45,ADG是等腰直角三角形, CDF754530,DCFDFC75,DCF是等腰直角三角形;CEDEDC30,ECD是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键5、(1)见解析;(2)见解析【分析】(1)根据12可推出DAE=BAC,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AEAC,结合260可推出AEC为等边三角形,据此证明【详解】(1)证明:12 1+2+ 即DAE=BAC在ADE和ABC中 ADEABC(ASA)(2)证明:

22、ADEABC AEAC又260AEC为等边三角形AECE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法6、(1)见解析(2)的面积为20【分析】(1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可(2)分别根据和的面积,用CF表示AF、DF,通过,得到,用CF表示出AE的长,最后利用面积公式求解即可(1)(1)解:由题意可知: 是的中线 在与中 (2)解:的面积为8,的面积为6,即 ,即 由(1)可知:, 【点睛】本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性

23、质,证明对应边相等,这是解决本题的关键7、(1);(2)与是偏等积三角形,理由见详解;修建小路的总造价为元【分析】(1)当时,则,证,再证与不全等,即可得出结论;(2)过作于,过作于,证,得,则,再证与不全等,即可得出结论;过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,求出,即可求解【详解】解:(1)当时,与是偏等积三角形,理由如下:设点到的距离为,则,、,与不全等,与是偏等积三角形,故答案为:;(3)与是偏等积三角形,理由如下:过作于,过作于,如图3所示:则,、是等腰直角三角形,在和中,与不全等,与是偏等积三角形;如图4,过点作,交的延

24、长线于,则,点为的中点,在和中,在和中,由得:与是偏等积三角形,修建小路的总造价为:(元【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型8、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由B=C=90,推出ABCD,则CDE=F,再由DE平分ADC,即可推出ADF=F,得到AD=AF,即ADF是等腰三角形,然后证明CDEBFE得到DE=FE,即E是DF的中点,即可证明AE平分BAD;(2)由(1)即

25、可用三线合一定理证明;(3)由CDEBFE,得到CD=BF,则AD=AF=AB+BF=AB+CD【详解】解:(1)如图所示,延长DE交AB延长线于F,B=C=90,ABCD,CDE=F,DE平分ADC,CDE=ADE,ADF=F,AD=AF,ADF是等腰三角形,E是BC的中点,CE=BE,CDEBFE(AAS),DE=FE,E是DF的中点,AE平分BAD;(2)由(1)得ADF是等腰三角形,AD=AF,E是DF的中点,AEDE;(3)CDEBFE,CD=BF,AD=AF=AB+BF=AB+CD【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识

26、是解题的关键9、见解析【分析】根据平行线的性质得出,运用“角角边”证明AEBCFD即可【详解】证明:,在AEB和CFD中,AEBCFD,【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明10、(1)90,40 ;(2)ABP+ACP+A=90;(3)A+ACPABP=90【分析】(1)由三角形内角和为180计算和中的角的关系即可(2)由(1)所得即可得出ABP、ACP、A的关系为ABP+ACP+A=90(3)由三角形外角的性质即可推出A+ACPABP=90【详解】(1)在中MPN=90PBC+PCB=180-MPN=180-90=90在中A+ABC+ACB

27、=180又ABC=PBC+ABP,ACB=ACP+BCPA+PBC+ABP +ACP+BCP =180PBC+PCB=90,A=50ABP +ACP=180-90-50=40(2)由(1)问可知A+PBC+ABP +ACP+BCP =180又PBC+PCB=90A+ABP +ACP=180-(PBC+PCB)=180-90=90(3)如图所示,设PN与AB交于点HA+ACP=AHP又ABP+MPN =AHPA+ACP=ABP+MPN又MPN =90A+ACP =90+ABPA+ACPABP=90【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90,45,45;90,60,30两种直角三角尺,三角形内角和是180,三角形的一个外角等于与它不相邻的两个内角的和

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁