《精品试卷沪科版九年级数学下册第24章圆专项攻克练习题.docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第24章圆专项攻克练习题.docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算半径为1,圆心角为的扇形面积为( )ABCD2、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻
2、A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m3、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个4、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长
3、等于( )ABCD5、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm6、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD7、如图,ABC中,ACB90,ABC40将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A50B70C110D1208、的边经过圆心,与圆相切于点,若,则的大小等于( )ABCD9、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD10、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )ABCD第
4、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中为区别口味,他打算制作“* 饼干”字样的矩形标签粘贴在盒子侧面为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90(如图)已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_ cm(取3.1)2、如图,已知扇形的圆心角为60,半径为2,则图中弓形(阴影部分)的面积为_3、如图,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120不变,则四边形ADBC的面积S的最大值是 _4、如图,点C是半圆上一动点,以BC为
5、边作正方形BCDE(使在正方形内),连OE,若AB4cm,则OE的最大值为_cm5、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D (1)求证:DB=DE;(2)若AB=12,BD=5,求AC长2、如图,在中,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F(1)求的度数;(2)若,且,求DF的长3、如图,点A是外一点,过点A作出的一条切线(使用尺规作图,作出一条即可,不要求写出
6、作法,不要求证明,但要保留作图痕迹)4、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC作AELOB于E、AFOC于F、(依据是 ),(依据是 ),BC是的直径(依据是 ),A的坐标为( )的半径为 5、如图,已知在中,D、E是BC边上的点,将绕点A旋转,得到,连接(1)当时,时,求证:;(2)当时,与有怎样的数量关系?请写出,并说明理由(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角
7、形?(直接写出结论,不必证明)-参考答案-一、单选题1、B【分析】直接根据扇形的面积公式计算即可【详解】故选:B【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键2、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角
8、形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键3、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键4、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】
9、本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键5、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键6、C
10、【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键7、B【分析】根据旋转可得,得【详解】解:,将绕点逆时针旋转得到,使点的对应点恰好落在边上,故选:B【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质8、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案
11、【详解】解:连接, ,与圆相切于点,故选:A【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键9、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对
12、称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合10、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心
13、对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、9.3【分析】根据弧长公式进行计算即可,【详解】解:粘贴后标签上边缘所在弧所对的圆心角为90,底面半径为6 cm,cm,故答案为:【点睛】本题考查了弧长公式,牢记弧长公式是解题的关键2、【分析】根据弓形的面积=扇形的面积-三角形的面积求解即可【详解】解:如图,ACOB,圆心角为60,OA=OB,OAB是等边三角形,OC=OB=1,AC=,SOAB=OBAC=2=,S扇形OAB=,弓形(阴影部分)的面积= S扇形OAB- SOAB=,故答案为:【点
14、睛】本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键3、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质4、【分析】如图,连接OD,O
15、E,OC,设DO与O交于点M,连接CM,BM,通过OCDOBE(SAS),可得OEOD,通过旋转观察如图可知当DOAB时,DO最长,此时OE最长,设DO与O交于点M,连接CM,先证明MEDMEB,得MDBM再利用勾股定理计算即可【详解】解:如图,连接OD,OE,OC,设DO与O交于点M,连接CM,BM,四边形BCDE是正方形,BCDCBE90,CDBCBEDE,OBOC,OCBOBC,BCD+OCBCBE+OBC,即OCDOBE,OCDOBE(SAS),OEOD,根据旋转的性质,观察图形可知当DOAB时,DO最长,即OE最长,MCBMOB9045,DCMBCM45,四边形BCDE是正方形,C、
16、M、E共线,DEMBEM,在EMD和EMB中,MEDMEB(SAS),DMBM2(cm),OD的最大值2+2,即OE的最大值2+2;故答案为:(2+2)cm【点睛】本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论5、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键三、解答题1、(1)见
17、解析;(2)【分析】(1)由切线性质及等量代换推出4=5,再利用等角对等边可得出结论;(2)由已知条件得出sinDEF和sinAOE的值,利用对应角的三角函数值相等推出结论.【详解】(1)如图,DCOA, 1+3=90, BD为切线,OBBD, 2+5=90, OA=OB, 1=2,3=4,4=5,在DEB中,4=5,DE=DB.(2)如图,作DFAB于F,连接OE,DB=DE, EF=BE=3,在RtDEF中,EF=3,DE=BD=5,DF=sinDEF= , AOE,,AOE=DEF, 在RtAOE中,sinAOE= , AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似
18、,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.2、(1)45;(2)【分析】(1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得【详解】解:(1)由旋转可知:,由三角形内角和定理得,点A,D,F,E共圆(2)连接EB,又,在中,【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质3、见解析【分析】先作线段的垂直平分线确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求【详解】如图,直线
19、AB就是所求作的,(作法不唯一,作出一条即可,需要有作图痕迹)【点睛】本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作4、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答【详解】解:如图2,连接BC作AEOB于E、AFOC于F、(依据是垂径定理),(依据是圆周角定理),BC是的直径(依据是圆周角定理),A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1
20、,),2【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键5、(1)见解析;(2)DAEBAC,见解析;(3)DEBD,见解析【分析】(1)根据旋转的性质可得ADAD,CADBAD,然后求出DAE60,从而得到DAEDAE,再利用“边角边”证明ADE和ADE全等,根据全等三角形对应边相等证明即可;(2)根据旋转的性质可得ADAD,再利用“边边边”证明ADE和ADE全等,然后根据全等三角形对应角相等求出DAEDAE,然后求出BADCAEDAE,从而得解;(3)求出DCE90,然后根据等腰直角三角形斜边等于直角边的倍可得DECD,再根据旋转的性质解答即可【详解】
21、(1)证明:ABD绕点A旋转得到ACD,ADAD,CADBAD,BAC120,DAE60,DAECADCAEBADCAEBACDAE1206060,DAEDAE,在ADE和ADE中, ,ADEADE(SAS),DEDE;(2)解:DAE BAC理由如下:在ADE和ADE中, ,ADEADE(SSS),DAEDAE,BADCAECADCAEDAEDAE,DAEBAC;(3)解:BAC90,ABAC,BACBACD45,DCE454590,DEC是等腰直角三角形,DECD,由(2)DEDE,ABD绕点A旋转得到ACD,BDCD,DEBD【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键