《2021届高考数学一轮复习第九章概率统计与统计案例第二节古典概型课时规范练文含解析北师大版.doc》由会员分享,可在线阅读,更多相关《2021届高考数学一轮复习第九章概率统计与统计案例第二节古典概型课时规范练文含解析北师大版.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第九章概率、统计与统计案例第二节 古典概型课时规范练A组基础对点练1某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2xy1上的概率为()A.B.C. D.解析:先后投掷两次骰子的结果共有6636种,而以(x,y)为坐标的点落在直线2xy1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为.答案:A2抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是()A. B.C. D.解析:抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的情况有:1,4;4,1;2,5;5,2;3,6;6,
2、3共6种,而抛掷两枚质地均匀的骰子的情况有36种,所以所求概率P,故选B.答案:B3若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A. B.C. D.解析:由题意知,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戌)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P.答案:D4在2,0,1,5这组
3、数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A. B.C. D.解析:分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P.答案:C5(2020河北三市联考)袋子中装有大小相同的5个小球,分别有2个红球、3个白球现从中随机抽取2个小球,则这2个小球中既有红球也有白球的概率为()A. B.C. D.解析:设2个红球分别为a、b,3个白球分别为A、B、C,从中随机抽取2个,则有(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),
4、共10个基本事件,其中既有红球也有白球的基本事件有6个,则所求概率为P.答案:D6(2020商丘模拟)已知函数f(x)x3ax2b2x1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A. B.C. D.解析:f(x)x22axb2,要使函数f(x)有两个极值点,则有(2a)24b20,即a2b2.由题意知所有的基本事件有9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值满足a2b2的共有6个,P.答案:D7(2020榆
5、林质检)从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A. B.C. D.解析:从1,2,3,4中任取两个不同的数字构成一个两位数,有12,13,14,21,23,24,31,32,34,41,42,43,共12种结果,其中大于30的两位数有31,32,34,41,42,43,共6个,所以这个两位数大于30的概率P.答案:A8(2020武汉部分学校调研)标有数字1,2,3,4,5的卡片各1张,从这5张卡片中随机抽取1张,不放回地再随机抽取1张,则抽取的第1张卡片上的数大于第2张卡片上的数的概率为()A. B.C. D.解析:5张卡片上分别写有数
6、字1,2,3,4,5,从这5张卡片中随机抽取2张,基本事件的总数n5420,抽得的第1张卡片上的数大于第2张卡片上的数的情况有:第1张抽到2,第2张抽到1;第1张抽到3,第2张抽到1或2;第1张抽到4,第2张抽到1或2或3;第1张抽到5,第2张抽到1或2或3或4.共10种故抽取的第1张卡片上的数大于第2张卡片上的数的概率P.答案:A9(2020武汉调研)已知某射击运动员每次射击击中目标的概率都为80%.现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;再以每4个随机
7、数为一组,代表4次射击的结果经随机模拟产生了如下20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281据此估计,该射击运动员4次射击至少3次击中目标的概率为_解析:4次射击中有1次或2次击中目标的有:7140,1417,0371,6011,7610,所求概率P1.答案:10(2020安阳模拟)盒中有三张分别标有号码3,4,5的卡片,从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为奇数的概率为_解析:法一:两次抽取的卡片号码有(3,3
8、),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5),共9种情况,其中至少有一个是奇数的有(3,3),(3,4),(3,5),(4,3),(4,5),(5,3),(5,4),(5,5),共8种情况,因此所求概率为.法二:所求事件的对立事件为:两次抽取的卡片号码都为偶数,只有(4,4)这1种取法,而两次抽取的卡片号码有(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5),共9种情况,因此所求事件的概率为1.答案:B组素养提升练11将一颗骰子投掷两次分别得到点数a,b,则直线axby0与圆(x2)2
9、y22相交的概率为_解析:圆心(2,0)到直线axby0的距离d,当d时,直线与圆相交,则有da,满足ba的共有15种情况,因此直线axby0与圆(x2)2y22相交的概率为.答案:12(2020桂林模拟)从正五边形ABCDE的5个顶点中随机选择3个顶点,则以它们作为顶点的三角形是锐角三角形的概率是_解析:从正五边形ABCDE的5个顶点中随机选择3个顶点,基本事件总数为10,即ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE,以它们作为顶点的三角形是锐角三角形的个数为5,即ABD,ACD,ACE,BCE,BDE,所以以它们作为顶点的三角形是锐角三角形的概率P.答案
10、:13某商场举行有奖促销活动,顾客购买一定金额的商品即可抽奖抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球若摸出的2个球都是红球则中奖,否则不中奖(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率你认为正确吗?请说明理由解析:(1)所有可能的摸出结果是A1,a1,A1,a2,A1,b1,A1,b2,A2,a1,A2,a2,A2,b1,A2,b2,B,a1,B,a2,B,b1,B,b2(2)不正确理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2
11、个球都是红球的结果为A1,a1,A1,a2,A2,a1,A2,a2,共4种,所以中奖的概率为,不中奖的概率为1,故这种说法不正确14设a2,4,b1,3,函数f(x)ax2bx1.(1)求f(x)在区间(,1上是减函数的概率;(2)从f(x)中随机抽取两个,求它们在(1,f(1)处的切线互相平行的概率解析:(1)由题意,得1,即ba.而(a,b)可能为(2,1),(2,3),(4,1),(4,3),共4种,满足ba的有3种,故所求的概率为.(2)由(1)可知,函数f(x)共有4种可能,从中随机抽取两个,有6种抽法因为函数f(x)在(1,f(1)处的切线的斜率为f(1)ab,所以这两个函数中的a与b之和应该相等,而只有(2,3),(4,1)这1组满足,故所求的概率为.