难点解析北师大版八年级数学下册第六章平行四边形综合测评试卷(无超纲).docx

上传人:可****阿 文档编号:32630539 上传时间:2022-08-09 格式:DOCX 页数:25 大小:848.61KB
返回 下载 相关 举报
难点解析北师大版八年级数学下册第六章平行四边形综合测评试卷(无超纲).docx_第1页
第1页 / 共25页
难点解析北师大版八年级数学下册第六章平行四边形综合测评试卷(无超纲).docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《难点解析北师大版八年级数学下册第六章平行四边形综合测评试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版八年级数学下册第六章平行四边形综合测评试卷(无超纲).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第六章平行四边形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14402、已知正多边形

2、的一个外角等于40,则这个正多边形的内角和的度数为_A360B1260C1120D11603、下列多边形中,内角和与外角和相等的是( )A三角形B四边形C五边形D六边形4、如图,点O是ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙两个区域的可能性的大小是( )A甲大B乙大C一样大D无法确定5、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大360D内角和与外角和相等6、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去

3、,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对7、如图,小明从A点出发,沿直线前进10米后向左转36,再沿直线前进10米,再向左转36照这样走下去,他第一次回到出发点A点时,一共走的路程是()A180米B110米C120米D100米8、一个正多边形的每个外角都等于45,则这个多边形的边数和对角线的条数分别是( )A8,20B10,35C6,9D5,59、如图所示,四边形ABCD中,Q是CD上的一定点,P是BC上的一动点,E、F分别是PA、PQ两边的中点;当点P在BC边上移动的过程中,线段EF的长度将( )A先变大,后变小B保

4、持不变C先变小,后变大D无法确定10、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45,OAOC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为 _2、将ABC纸片沿DE按如图的方式折叠若C50,185,则2等于_3、如图,在ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC6,PQ4,则PCAQ的最小值为_4、

5、如图,已知在中,若沿图中虚线剪去,则_5、若一个多边形的内角和是外角和的倍,则它的边数是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC,ADBC于点D(1)若DEAB交AC于点E,证明:ADE是等腰三角形;(2)若BC12,DE5,且E为AC中点,求AD的值2、已知,在中,点D为BC的中点(1)观察猜想如图,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是_;线段DE与DF的位置关系是_(2)类比探究如图,若点E、F分别是AB、AC上的点,且,上述结论是否仍然成立,若成立,请证明:若不成立,请说明理由;(3)解决问题如图,若点E、F分别为AB、CA

6、延长线的点,且,请直接写出的面积3、探究与发现:(1)如图(1),在ADC中,DP、CP分别平分ADC和ACD若,则 若,用含有的式子表示为 (2)如图(2),在四边形ABCD中,DP、CP分别平分ADC和BCD,试探究P与A+B的数量关系,并说明理由(3)如图(3),在六边形ABCDEF中,DP、CP分别平分EDC和BCD,请直接写出P与A+B+E+F的数量关系: 4、(1)如图,在中,求的度数(2)已知一个正多边形的内角和比它的外角和的倍多,求这个正多边形每个外角的度数5、如图在平面直角坐标系中,点A(-2,0),B(2,3),C(0,4)(1)判断ABC的形状,并说明理由;(2)点D为平

7、面直角坐标系中的点,以A、B、C、D为顶点的四边形为平行四边形,写出所有满足条件的点D的坐标-参考答案-一、单选题1、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.2、B【分析】根据正多边形的内角和计算即可;【详解】正n边形的每个外角相等,且其和是,;故选B【点睛】本题主要考查了正多边形的外角和与内角和,准确计算是解题的关键3、B【分析

8、】根据多边形的内角和公式(n-2)180与多边形的外角和定理列式进行计算即可得解【详解】解:设多边形的边数为n,根据题意得(n-2)180=360,解得n=4故选:B【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键4、C【分析】如图,连接 记过的直线交于 则为的中点,再证明 可得 从而可得答案.【详解】解:如图,连接 记过的直线交于 为ABCD的对称中心,为的中点, 同理: 所以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键

9、.5、D【分析】直接利用多边形内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360,故本选项表述错误;B四边形的内角和与外角和相等,都等于360,故本选项表述错误;C六四边形的内角和与外角和相等,都等于360,故本选项表述错误;D四边形的内角和与外角和相等,都等于360,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是3606、C【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:

10、如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理7、D【分析】根据题意,小明走过的路程是正多边形,先用360除以36求出边数,然后再乘以10m即可【详解】解:每次小明都是沿直线前进10米后向左转36,他走过的图形是正多边形,边数n=36036=10,他第一次回到出发点A时,一共走了1010=100米故选

11、:D【点睛】本题考查了多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键8、A【分析】利用多边形的外角和是360度,正多边形的每个外角都是45,求出这个多边形的边数,再根据一个多边形有条对角线,即可算出有多少条对角线【详解】解:正多边形的每个外角都等于45,36045=8,这个正多边形是正8边形,=20(条),这个正多边形的对角线是20条故选:A【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360,和边数无关正多边形的每个外角都相等任何多边形的对角线条数为条9、B【分析】连接,根据题意可得为的中位线,可知,由此可知不变【详

12、解】如图,连接AQ,分别为、的中点,为的中位线,为定点,的长不变,的长不变,故选:【点睛】本题主要考查三角形中位线定理,掌握三角形中位线平行于第三边且等于第三边的一半是解题的关键10、C【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解二、填空题1、(8,6)【分析】根据平行四边形的性质:对边平行且相等,得出点的平移方式,解答即可【详解】解:平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),

13、由A,B坐标可得B向右平移3个单位,向上平移3个单位,可以得到点A点D可由点C向右平移3个单位,向上平移3个单位得到,点C坐标为(5,3)则点D坐标为(8,6);故答案为:(8,6)【点睛】此题考查了坐标与图形,涉及了平行四边形的性质以及点的平移,掌握平行四边形的性质以及点的平移规律是解题的关键2、【分析】利用三角形的内角和定理以及折叠的性质,求出,利用四边形内角和为,即可求出2【详解】解:在中,在中, 由折叠性质可知: ,四边形的内角和为, , ,且185,故答案为:【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度

14、数,这是解决该题的关键3、【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,四边形是平行四边形,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,在中,;故答案是:【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键4、270度【分析】利用了四边形内角和为360和直角三角形的性质求解【详解】解:四边形的内角和为360,直角三角形中两个锐角和为90,12360(AB)36090270故答案为:270【点睛】本题是一道根据四边形内角和为360和直角三角形的性质求解的综合题,有利于锻炼学生综合运用

15、所学知识的能力5、【分析】根据多边形的内角和公式(n2)180以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)1802360,解得n6答:这个多边形的边数是6故答案为:6【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360三、解答题1、(1)见解析;(2)8【分析】(1)根据“三线合一”性质先推出BAD=CAD,再结合平行线的性质推出BAD=ADE,从而得到ADE=EAD,即可根据“等角对等边”证明;(2)根据题意结合中位线定理可先推出AC=2DE,然后在RtADC中利用勾股定理求解即可【

16、详解】(1)证:在ABC中,ABAC,ABC为等腰三角形,ADBC于点D,由“三线合一”知:BAD=CAD,DEAB交AC于点E,BAD=ADE,CAD=ADE,即:ADE=EAD,AE=DE,ADE是等腰三角形;(2)解:由“三线合一”知:BD=CD,BC=12,DC=6,E为AC中点,DE为ABC的中位线,AB=2DE,AC=AB=2DE=10,在RtADC中,AD=8【点睛】本题考查等腰三角形的性质与判定,勾股定理解三角形,以及三角形的中位线定理等,掌握等腰三角形的基本性质,熟练运用中位线定理和勾股定理计算是解题关键2、(1),;(2)成立,证明见解析;(3)【分析】(1)由点E、F、D

17、分别是AB、AC、BC的中点,可得,再由,得,由此即可得到答案;(2)连接,只需要证明,得到,即可得到结论;(3)连接AD,证明BDEADF得到,则,由此求解即可【详解】解:(1)点E、F、D分别是AB、AC、BC的中点,即,故答案为:,;(2)结论成立:,证明:如图所示,连接,D为BC的中点,且AD平分,在和中,即,即;(3)如图所示,连接AD,D为BC的中点,且AD平分,FAD=180-CAD=135,EBD=180-ABC=135,FAD=EBD,在在和中,BDEADF(SAS),【点睛】本题主要考查了三角形中位线定理,全等三角形的性质与判定,等腰直角三角形的性质等等,解题的关键在于能够

18、熟练掌握全等三角形的性质与判定条件3、(1)125P90;(2)P(AB)(3)P(ABEF)180【分析】(1)根据角平分线的定义可得:CDPADC,DCPACD,根据三角形内角和为180可得P与A的数量关系;同的方法即可求解;(2)根据角平分线的定义可得:CDPADC,DCPBCD,根据四边形内角和为360,可得BCDADC360(AB),再根据三角形内角和为180,可得P与AB的数量关系;(3)根据角平分线的定义可得:CDPADC,DCPBCD,根据六边形内角和为720,可得BCDEDC720(ABEF),再根据三角形内角和为180,可得P与AB的数量关系【详解】解:(1)DP、CP分别

19、平分ADC和ACD,CDPADC,DCPACDAADCACD180ADCACD180APPDCPCD180P180(PDCPCD)180 (ADCACD)P180(180A)90A=9070=125故答案为:125;DP、CP分别平分ADC和ACD,CDPADC,DCPACDAADCACD180ADCACD180APPDCPCD180P180(PDCPCD)180 (ADCACD)P180(180A)90A=90故答案为:P90;(2)P(AB)理由如下:DP、CP分别平分ADC和BCD,CDPADC,DCPBCDABBCDADC360BCDADC360(AB)PPDCPCD180P180(P

20、DCPCD)180(ADCBCD)P180360(AB)(AB)(3)DP、CP分别平分EDC和BCDPDCEDC,PCDBCDABEFBCDEDC720BCDEDC720(ABEF)PPDCPCD180P180(PDCPCD)180(EDCBCD)P180 720(ABEF)P(ABEF)180故答案为:P(ABEF)180【点睛】本题考查了四边形综合题,多边形的内角和,角平分线的性质,利用多边形的内角和表示角的数量关系是本题的关键4、(1);(2)每一个外角的度数是【分析】(1)根据平行线的性质可得B的度数,再根据等腰三角形的性质可得A的度数;(2)根据n边形的内角和等于外角和的3倍多18

21、0,可得方程180(n-2)=3603+180,再解方程即可【详解】解:(1),;设这个多边形的边数为,根据题意得:,解得,即它的边数是,所以每一个外角的度数是【点睛】本题考查了平行线的性质、等腰三角形的性质以及多边形内角和与外角和解题的关键是掌握多边形内角和公式,明确外角和是3605、(1)ACB是直角三角形,理由见解析;(2)D1(0,-1),D2(-4,1),D3(4,7)【分析】(1)根据勾股定理的判定即可确定ABC的形状;(2)根据平行四边的性质与判定定理,结合图形,即可得出答案【详解】解:(1) , ACB是直角三角形;(2) D1(0,-1),D2(-4,1),D3(4,7)【点睛】本题考查了直角三角形的判定,平行四边形的性质和判定,平面直角坐标系中点的坐标,解题的关键结合平行四边形的性质写出点的坐标

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁