2022年最新精品解析沪科版九年级数学下册第24章圆定向攻克试题(含答案解析).docx

上传人:可****阿 文档编号:32625201 上传时间:2022-08-09 格式:DOCX 页数:31 大小:1.09MB
返回 下载 相关 举报
2022年最新精品解析沪科版九年级数学下册第24章圆定向攻克试题(含答案解析).docx_第1页
第1页 / 共31页
2022年最新精品解析沪科版九年级数学下册第24章圆定向攻克试题(含答案解析).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《2022年最新精品解析沪科版九年级数学下册第24章圆定向攻克试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析沪科版九年级数学下册第24章圆定向攻克试题(含答案解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD2、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的

2、长是( )A1BCD23、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD4、如图图案中,不是中心对称图形的是( )ABCD5、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定6、的边经过圆心,与圆相切于点,若,则的大小等于( )ABCD7、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对8、如图,四边形ABCD内接于O,若ADC=130,则AOC的度数

3、为( )A25B80C130D1009、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD10、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(hun)其外,旁有庣(tio)焉”意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺

4、2、平面直角坐标系中,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90得到AB,当BK取最小值时,点B的坐标为_3、一块直角三角板的30角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为_4、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x25x+60的根,则直线l与圆O的的位置关系是_5、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正_边形三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 3

5、0,求CD的长2、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;(2)画出以点为中心,旋转180后的,并求的面积3、如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D (1)求证:DB=DE;(2)若AB=12,BD=5,求AC长4、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上(1)求抛物线的解析式;(2)求过A,B,C三点的圆的半径;(3)是否存在点P,使得ACP是以AC为直角边的直角

6、三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;5、在等边中,是边上一动点,连接,将绕点顺时针旋转120,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值-参考答案-一、单选题1、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意

7、.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合叫作中心对称图形.2、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键3、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据

8、含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键4、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D

9、选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念中心对称图形是要寻找对称中心,旋转180后重合5、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键6、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案【详解】解:连接, ,与圆相切于点,故选:A【点睛】本题考查的是切线

10、的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键7、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键8、D【分析】根据圆内接四边形的性质求出B的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,B+ADC=180,ADC=130,B=50,由圆周角定理得,AOC=2B=100,故选:D【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键9、C【详解】解:选项A是轴对称图形,不是中心对称图形,

11、故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.10、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3

12、,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形二、填空题1、【分析】如图,根据四边形CDEF为正方形,可得D=90,CD=DE,从而得到CE是直径,ECD=45,然后利用勾股定理,即可求解【详解】解:如图, 四边形CDEF为正方形,D=90,CD=DE,CE是直径,ECD=45,根据题意得:AB=2.5, , , ,即此斛底面的正方形的边长为 尺故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键2、【分析】如图,作BHx轴于H由ACOBAH(AAS),推出BHOAm,AH

13、OC4,可得B(m+4,m),令xm+4,ym,推出yx4,推出点B在直线yx4上运动,设直线yx4交x轴于E,交y轴于F,作KMEF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案【详解】解:如图,作BHx轴于HC(0,4),K(2,0),OC4,OK2,ACAB,AOCCABAHB90,CAO+OCA90,BAH+CAO90,ACOBAH,ACOBAH(AAS),BHOAm,AHOC4,B(m+4,m),令xm+4,ym,yx4,点B在直线yx4上运动,设直线yx4交x轴于E,交y轴于F,则 作KMEF于M,过作于 则 根据垂线

14、段最短可知,当点B与点M重合时,BK的值最小,此时B(3,1),故答案为:(3,1)【点睛】本题考查坐标与图形的变化旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题3、4【分析】连接OB、OC,由题意易得BOC=60,则有BOC是等边三角形,然后问题可求解【详解】连接OB、OC,如图所示:A=30,BOC=60,OB=OC,BOC是等边三角形,即O的半径为4故答案为:4【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键4、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若

15、dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案【分析】解:x25x+60,(x2)(x3)0,解得:x12,x23,圆的半径是方程x25x+60的根,即圆的半径为2或3,当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交故答案为:相切或相交【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定5、六【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数【详解】解:当一个正多边形

16、的边长与它的外接圆的半径相等时,画图如下:半径与边长相等,这个三角形是等边三角形,正多边形的边数:360606,这个正多边形是正六边形故答案为:六【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键三、解答题1、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,DAM=DAF,则有CAB=DAB,进而可得BAM=90,然后问题可求证;(2)由题意易得CD/AM,ANC=OCE=30,然后可得OE=1,CE=,进而问题可求解(1)证明:AB是O的直径,弦CDAB于点EBC=BDCAB=DABAM是DAF的平分线DAM=DAFCAD+DAF=180

17、DAB+DAM=90即BAM=90,ABAMAM是O的切线(2)解:ABCD,ABAM CD/AMANC=OCE=30在RtOCE中,OC=2OE=1,CE=AB是O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键2、(1)图见解析,点的坐标为(2)图见解析,4【分析】(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定

18、理确定三角形的底和高,即可得出面积(1)解:如图所示,点的坐标为;,为无理数,符合题意;(2)如图所示:点的坐标,点的坐标为,旋转180后的的面积等于的面积, ,的面积为4【点睛】题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键3、(1)见解析;(2)【分析】(1)由切线性质及等量代换推出4=5,再利用等角对等边可得出结论;(2)由已知条件得出sinDEF和sinAOE的值,利用对应角的三角函数值相等推出结论.【详解】(1)如图,DCOA, 1+3=90, BD为切线,OBBD, 2+5=90, OA=OB, 1=2,3=4,4=5,在DEB中

19、,4=5,DE=DB.(2)如图,作DFAB于F,连接OE,DB=DE, EF=BE=3,在RtDEF中,EF=3,DE=BD=5,DF=sinDEF= , AOE,,AOE=DEF, 在RtAOE中,sinAOE= , AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.4、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5)【分析】(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m

20、),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解【详解】解:(1)令x=0,则y=3,则点A的坐标为(3,0),根据题意得:OC=3=OA=3OB,故点B、C的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),把(3,0)代入得-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),则圆的半径为

21、:;(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,设点P(x,-x2+2x+3),过点P作PQ轴于点Q,OA =OC,PAC=90,ACO=OAC=45,PAC=90,PAQ=45,PAQ 是等腰直角三角形,PQ=AQ=x,AQ+AO=x+3=-x2+2x+3,解得:(舍去),点P(1,4);设点P1(m,-m2+2m+3),过点P1作P1D轴于点D,同理得P1CD是等腰直角三角形,且点P1在第三象限,即m0,P1D=CD=m2-2m-3,DO=-m,DO+OC= P1D,即-m+3= m2-2m-3,解得:(舍去),点P(-2,-5);综上,点P(1,4)或(-2,-5)【点

22、睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏5、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,

23、即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁