中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合测试试题(含答案解析).docx

上传人:可****阿 文档编号:32559500 上传时间:2022-08-09 格式:DOCX 页数:22 大小:202.58KB
返回 下载 相关 举报
中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合测试试题(含答案解析).docx_第1页
第1页 / 共22页
中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合测试试题(含答案解析).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述综合测试试题(含答案解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第十章数据的收集、整理与描述综合测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A90分以上的学生有14名B该班有50名同学参赛C成绩在7080分的人数最多D第五组的百分比为16%2、如图是某超市20172021年的销售额及其增长率的统计图,下面说法中正确的是( )A这5年中,销售额先增后减再增B这5年中,增长率先变大后变小C这

2、5年中,销售额一直增加D这5年中,2021年的增长率最大3、为了解1000台新型电风扇的寿命,从中抽取10台作连续运转实验,在这个问题中,下列说法错误的是( )A1000台新型电风扇的寿命是总体B抽取的10台电扇的使用寿命是样本C每台电扇的寿命是个体D抽取的10台电扇是样本容量4、要调查下列问题,适合采用普查的是( )A中央电视台开学第一课的收视率B某城市居民6月份人均网上购物的次数C即将发射的气象卫星的零部件质量D银川市中小学生的视力情况5、如下条形图、扇形图分别是甲、乙两户居民家庭全年支出费用的统计图根据统计图,对两户“教育”支出占全年总支出的百分比所作出的判断中,正确的是( ) A甲比乙

3、多B乙比甲多C甲、乙一样多D无法确定哪一户多6、小明同学统计了某学校八年级部分同学每天阅读图书的时间,并绘制了统计图,如图所示下面有四个推断:小明此次一共调查了100位同学;每天阅读图书时间不足15分钟的同学人数多于4560分钟的人数;每天阅读图书时间在1530分钟的人数最多;每天阅读图书时间超过30分钟的同学人数是调查总人数的20%根据图中信息,上述说法中正确的是()ABCD7、在频数分布直方图中,下列说法正确的是( )A各小长方形的高等于相应各组的频率B各小长方形的面积等于相应各组的频数C某个小长方形面积最小,说明落在这个组内的数据最多D长方形个数等于各组频数的和8、为了解我县最近一周内每

4、天最高气温的变化情况,宜采用( )A折线统计图B条形统计图C扇形统计图D频数直方图9、下列说法正确的是( )A折线图易于显示数据的变化趋势B条形图能显示每组数在总体中所占百分比C扇形图易于比较每组数的大小差别D扇形图能显示每组的具体数据10、为了记录一个病人的体温变化情况,应选择的统计图是( )A条形统计图B扇形统计图C折线统计图D以上都不是二、填空题(5小题,每小题4分,共计20分)1、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有_名学生;155.5-160.5这一组学生人数是8,频率是_2、目前我国中年人群中“

5、三高”(高血压、高血脂、高血糖)现象严重,这个结论是通过_得到的(填“全面调查”或“抽样调查”)3、在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示由图可知:(1)该班有_名学生;(2)69.579.5这一组的频数是_,频率是_4、当今最常用的购物软件“手机淘宝”的英语翻译为“mobile phone Taobao”,其中字母“o”出现的频率为_5、要想了解中国疫情的变化情况,最好选用 _统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 _统计图三、解答题(5小题,每小题10分,共计50分)1、每年夏天全国各地总有未成年人因溺水而丧失生命,令人痛心疾首今年某中学为确保学生

6、安全,开展了“远离溺水,珍爱生命”的防溺水安全竞赛学校对参加比赛的学生获奖情况进行了统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题(1)参加此安全竞赛的学生共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为(3)将条形统计图补充完整2、某市教育局在全市党员教职工中开展的“学党史,知党情,颂党恩”活动中,进行了论文的评比,论文的交稿时间为6月1日至25日,评委会把各校交的论文的篇数按4天一组分组统计,绘制成如图所示的频数分布直方图(每组包括左端点,不包括右端点)已知从左往右各小长方形的高的比为2:3:4:6:4:1,第二组的频数为18请回答下列问题(1)本次

7、活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?是多少?(3)经过评比,第四组和第六组分别有20篇、4篇论文获奖,则这两组哪组获奖率高?3、小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比(2)请绘制该天A、B、C三种报纸销售量的扇形统计图(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份4、某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即

8、三局中胜两局就获胜每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数这五个队完成所有比赛后得到如下的积分表第一组ABCDE获胜场数总积分A2:12:01:22:0x13B1:2m0:21:20yC0:2n1:22:12pD2:12:02:11:2312E0:22:11:22:129根据上表回答下列问题:(1)第一组一共进行了场比赛,A队的获胜场数x为;(2)当B队的总积分y6时,上表中m处应填,n处应填;(3)写出C队总积分p的所有可能值为:5、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项)根据收集到

9、的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了多少名学生;(2)请将统计图补充完整;(3)如果全校有3600名学生,请问全校学生中,最喜欢“踢毽”活动的学生约有多少人-参考答案-一、单选题1、A【解析】【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在7080分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的

10、是从条形图中获取信息,频数与频率的含义,理解频数与频率的含义是解题的关键.2、C【解析】【分析】根据统计图中增长率及销售额的变化逐一判断即可得答案【详解】A.这5年中,销售额连续增长,故该选项错误,B.这5年中,增长率先变大后变小再变大,故该选项错误,C.这5年中,销售额一直增加,故该选项正确,D.这5年中,2018年的增长率最大,故该选项错误,故选:C【点睛】本题考查折线统计图与条形统计图,从统计图中,正确得出需要信息是解题关键3、D【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目我们在区分总体、个体、

11、样本、样本容量,这四个概念时,首先找出考查的对象从而找出总体、个体再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量【详解】解:A、1000台新型电风扇的寿命是总体,正确,故选项A不合题意;B、抽取的10台电扇的使用寿命是样本,正确,故选项B不合题意;C、每台电扇的寿命是个体,正确,故选项C不符合题意;D、此次抽样调查的样本容量是,故选项D错误,故选项D合题意故选:D【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象总体、个体与样本的考查对象是相同的,所不同的是范围的大小样本容量是样本中包含的个体的数目,不能带单位

12、4、C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.【详解】解:A、调查中央电视台开学第一课的收视率,适合抽查,故本选项不合题意; B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意; C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意; D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意 故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、

13、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查5、B【解析】【分析】根据条形统计图求得教育支出的具体数,进而求得甲居民家庭教育支出所占百分比,结合扇形统计图进行比较即可【详解】,根据扇形统计图可知乙居民家庭教育支出所占百分比为,乙比甲多,故选B【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小6、A【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断【详解】解:小明此次一共调查了10+6

14、0+20+10=100(人),此结论正确;由频数分布直方图知,每天阅读图书时间不足15分钟的人数与45-60分钟的人数相同,均为10人,此结论错误;每天阅读图书时间在15-30分钟的人数最多,有60人,此结论正确;每天阅读图书时间超过30分钟的人数占调查总人数的比例为=30%,此结论错误;故选:A【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题7、B【解析】【分析】根据频数直方图的定义逐一判断即可得答案【详解】在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,在频数分布直方图

15、中,各小长方形的面积等于相应各组的频数,故B选项正确, 在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,故选:B【点睛】本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键8、A【解析】【分析】根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可【详解】解:根据统计图的特点,为了解我县最近一周内每天最高气温的变化情况,最适合使用的统计图是折线统计图故选:A【点睛】此题主要考查了统计图的选择根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直

16、接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目9、A【解析】【分析】根据扇形统计图、折线统计图、条形统计图的含义求解即可【详解】解:选项A:折线图易于显示数据的变化趋势,故A正确;选项B、C、D:条形统计图能清楚地表示出每个项目的具体数目,扇形图能显示每组数在总体中所占百分比,故B、C、D错误故选:A【点睛】本题考查统计图的选择及用途:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目10、C【解析】【分析】根据题意中的“变化情况”直接

17、选择折线统计图【详解】为了记录一个病人的体温变化情况,应选择的统计图是折线统计图,故选C【点睛】本题考查了条形统计图,扇形统计图,折线统计图,频数直方图的概念,根据实际选择合适的统计图,根据题意中的“变化情况”选择统计图是解题的关键折线统计图用折线的起伏表示数据的增减变化情况不仅可以表示数量的多少,而且可以反映数据的增减变化情况二、填空题1、 50 0.16【解析】【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可【详解】依题意(人)故答案为:【点睛】本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键频率表示每个对象出现的次数与总次数的比值2、抽样调查【解析】【分析】

18、根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可【详解】解:目前我国中年人群中“三高”(高血压、高血脂、高血糖)现象严重,这个结论是通过抽样调查得到的,故答案为:抽样调查【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,解题的关键是知道一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查3、 60 18 0.3【解析】【分析】(1)根据直方图的意义,将各组频数之和相加可得答案;(2)由直方图可以看出:频数为18

19、,又已知总人数,相除可得其频率【详解】解:(1)根据直方图的意义,总人数为各组频数之和=68101816260(人),故答案是:60;(2)读图可得:69.579.5这一组的频数是18,频率=1860=0.3,故答案是:18,0.3【点睛】本题主要考查频率和频数,频数直方图,读图时要全面细致,关键要充分运用数形结合思想来解决由统计图形式给出的数学实际问题4、【解析】【分析】用字母“o”出现的个数除以总的字母个数即可得出答案【详解】解:字母“o”出现的次数为4,该英语中字母“o”出现的频率为;故答案为:【点睛】此题主要考查了频率,关键是掌握频率的定义,频率=频数数据总数5、 折线 扇形【解析】【

20、分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图故答案为:折线,扇形【点睛】此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键三、解答题1、(1)40;(2)90;(3)见解析【分析】(1)从两个统计图中可知“特等奖”的有18人,占全部参加竞赛人数的45%,可求出参加竞赛人数;(2)求出“三等奖”所占的百分比,即可求出相

21、应的圆心角的度数;(3)求出“二等奖”的人数,即可补全条形统计图【详解】解:(1)1845%40(人),故答案为:40;(2)36090,故答案为:90;(3)40410188(人),补全条形统计图如图所示:【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,理解两个统计图中的数量关系是正确解答的关键2、(1)本次活动共有120篇论文参加评比;(2)计算可知第四组上交的论文数量最多,有36篇;(3)第六组的获奖率较高【分析】(1)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,又知第二组的频数为18,

22、则总篇数=第二组的频数第二组的频率;(2)由图可以看出第四组的频率组大,则第四组的论文数量最多;(3)第四组的论文的频数=1200.3=36篇,第六组的论文的频数=1200.05=6篇;则第四组的获奖率=2036=56%,第六组的获奖率为46=67%;则第六组的获奖率较高【详解】解:(1)第二组的频率是=0.15总篇数是180.15=120(篇),则本次活动共有120篇论文参加评比. (2)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,第四组的论文的频数=1200.3=36篇,则计算可知第四组上交的论文

23、数量最多,有36篇. (3)第六组的论文的频数=1200.05=6篇;第四组的获奖率=2036100%56%,第六组的获奖率为4667%;56%67%,则第六组的获奖率较高. 【点睛】本题考查频率的分布直方图,能从图表中提取有用的信息是解题的关键3、(1)该天A、C报纸的销售量各占这三种报纸销售量之和的20和30;(2)见解析;(3)小明应购进A种报纸20份,B种报纸50份,C种报纸30份【分析】(1)用A,C报纸的销售量分别除以三种报纸销售量之和,然后求解即可;(2)由(1)的结果绘制扇形统计图;(3)用100分别乘以三种报纸所占的百分比即可求得结果【详解】解:(1), 该天A、C报纸的销售

24、量各占这三种报纸销售量之和的20和30(2)A、B、C三种报纸销售量的扇形统计图如图所示(3)1002020(份),1005050(份),1003030(份) 小明应购进A种报纸20份,B种报纸50份,C种报纸30份【点睛】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据4、(1)10,3;(2)2:0;(3)9或10【分析】(1)利用公式即可求出比赛场次,根据比赛表格可得出A的获胜的场次即可(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为

25、a,b,c,d,且abcd,根据E的总分可得:a+ b+2c9,根据D的总得分可得b+2c+d=12,根据A的总分可得:b+c+2d+13,解方程组,讨论整数解可得出a1,b2,c3,d=4;设m对应的积分为x,当y6时,b+x+a+b6,即2+x+1+26,解方程即可;(3)根据C队胜2场,分两种情况:当C、B的结果为2:0时,当C、B的结果为2:1时,分别把得分相加即可【详解】解:(1)10(场),第一组一共进行了10场比赛;每场比赛采用三局两胜制,A、B的结果为2:1,A获胜,A、C的结果为2:0,A获胜,A、E的结果为2:0,A获胜,A、D的结果为1:A负,A队共获胜场3常, x=3,

26、故答案为:10,3;(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且abcd,根据E的总分可得:a+ b+2c9,根据D的总得分可得b+2c+d=12,根据A的总分可得:b+c+2d+13,-得d-c=1,d=c+1代入得b+3c=11,c=,b=2,c=3,d=c+1=4,a=9-2-6=1,a1,b2,c3,d=4,设m对应的积分为x,当y6时,b+x+a+b6,即2+x+1+26,x1,m处应填0:2;B:C0:2,C:B2:0,n处应填2:0;(3)C队胜2场,分两种情况:当C、B的结果

27、为2:0时,pa+d+c+b=1+4+3+210;当C、B的结果为2:1时,pa+2c+b=1+32+29;C队总积分p的所有可能值为9或10故答案为:9或10【点睛】本题考查比赛应用题,表格信息的收集与处理,四元方程组的解法,列代数式求值,分类讨论思想应用,认真阅读题目,读懂题意,是解题关键5、(1)200人;(2)见解析;(3)人【分析】(1)根据喜欢“球类”的人数以及百分比,求解即可;(2)根据总人数,求得跳绳的人数,补全统计图即可;(3)求得“踢毽”活动的百分比,即可求解;【详解】解:(1)从统计图中可以得到喜欢“球类”的人数为80人,所占百分比为,则总人数为人,故答案为200人(2)喜欢“跳绳”的人数有人,补全统计图,如下:(3)最喜欢“踢毽”活动的学生约为人,故答案为人【点睛】此题考查了统计的基本知识,涉及了计算样本容量,统计图以及根据样本估算总体,解题的关键是读懂统计图,从统计图中获取有关数据

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁