《精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组综合训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组综合训练试题(含解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如果xy,则下列不等式正确的是()Ax1y1B5x5yCD2x2y2、若ab,则下列式子正确的是()AB3a3bC3a3bDa3b33、下列语句中,是命题的是()若160,260,则12;同位角相等吗?画线段ABCD;如果ab,bc,那么ac;直角都相等ABCD4、已知x2不是关于x的不等式2xm4的整数解,x3是关于x的不等式2xm4的一个整数解,则m的取值范围为()A0m2B0m2C0m2D0
2、m25、如果ab,c0,那么下列不等式成立的是()Aa+cbBacbcCac+1bc+1Da(c2)b(c2)6、把不等式组的解集在数轴上表示,正确的是()ABCD7、不等式的整数解是1,2,3,4则实数a的取值范围是( )ABCD8、若不等式(a+1)x2的解集为x,则a的取值范围是( )Aa1Ba1Da-19、一个不等式的解集为x1,那么在数轴上表示正确的是()ABCD10、不等式的解集在数轴上表示正确的是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、解不等式:x32x的解集是 _2、小明同学所在班级举行了生态文明知识小竞赛,试卷一共有25道题评分办法是答对一题记4分,不答
3、记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了_道题3、 “与的和小于”用不等式表示为_4、定义:对于实数a,符号a表示不大于a的最大整数例如:5.2=5,-1=-1,-=-4;如果,则x的最大值为_5、节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个奉节脐橙的成本价的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹
4、果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个已知每个鲜果礼盘的成本价定为各水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等某单位元旦节发福利,准备给每个员工发一个鲜果礼盒采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间该水果店通过核算,此次订单的利润率为,则该单位一共有_名员工三、解答题(5小题,每小题10分,共计50分)1、某商场同时购进甲、乙、丙三种商品共100件,总进价为6800元
5、,其每件的进价和售价如下表:商品名称甲乙丙进价(元/件)407090售价(元/件)60100130设甲种商品购进x件,乙种商品购进y件(1)商场要求购进的乙种商品数量不超过甲种商品数量,求甲种商品至少购进多少件?(2)若销售完这些商品获得的最大利润是3100元,求甲种商品最多购进多少件?2、已知方程组的解满足x为非正数,y为负数(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x2m1的解为x1,请写出整数m的值3、解下列不等式组4、计算:(1)解不等式2x114(x3)+3;(2)解不等式组5、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系若两个不同的自然数的所有真因
6、数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”例如:18的正因数有1、2、3、6、9、18,它的真因数之和为;51的正因数有1、3、17、51,它的真因数之和为,所以称18和51为“亲和数”又如要找8的亲和数,需先找出8的真因数之和为,而,所以8的亲和数为,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”例如:121、1351等(1)10的真因数之和为_;(2)求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字
7、小于十位上的数字,求满足条件的五位“两头蛇数”-参考答案-一、单选题1、C【分析】根据不等式的性质解答不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变【详解】解:Axy,x1y1,故本选项不符合题意;Bxy,5x5y,故本选项不符合题意;Cxy,故本选项符合题意; Dxy,2x2y,故本选项不符合题意;故选:C【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键2、D【分析】根据不等式的基本性质判断即可【详解】解:A选项,ab,
8、故该选项不符合题意;B选项,ab,3a3b,故该选项不符合题意;C选项,ab,3a3b,故该选项不符合题意;D选项,ab,a3b3,故该选项符合题意;故选:D【点睛】本题考查了不等式的基本性质,掌握不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键3、A【分析】根据命题的定义分别进行判断即可【详解】解:若160,260,则12,是命题,符合题意;同位角相等吗?是疑问句,不是命题,不符合题意;画线段ABCD,没有对事情作出判断,不是命题,不符合题意;如果a
9、b,bc,那么ac,是命题,符合题意;直角都相等,是命题,符合题意,命题有故选:A【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理4、B【分析】由2x-m4得x,根据x=2不是不等式2x-m4的整数解且x=3是关于x的不等式2x-m4的一个整数解得出2、3,解之即可得出答案【详解】解:由2x-m4得x,x=2不是不等式2x-m4的整数解,2,解得m0;x=3是关于x的不等式2x-m4的一个整数解,3,解得m2,m的取值范围为0m2,故选:B【点睛】本题主要考查了一元一次不等式的整数解,解题的
10、关键是根据不等式整数解的情况得出关于m的不等式5、A【分析】根据不等式的性质,逐项判断即可求解【详解】解:A、由ab,c0得到:a+cb+0,即a+cb,故本选项符合题意B、当a1,b2,c3时,不等式acbc不成立,故本选项不符合题意C、由ab,c0得到:ac+1bc+1,故本选项不符合题意D、由于c22,所以a(c2)b(c2),故本选项不符合题意故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变6、D【分析】先求出不等式组的解集
11、,再把不等式组的解集在数轴上表示出来,即可求解【详解】解:,解不等式,得: ,所以不等式组的解集为 把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键7、A【分析】先确定 再分析不符合题意,确定 再解不等式,结合不等式的整数解可得:,从而可得答案.【详解】解: 显然: 当时,不等式的解集为:,不等式没有正整数解,不符合题意,当时,不等式的解集为: 不等式的整数解是1,2,3,4, 由得: 由得: 所以不等式组的解集为:故选A【点睛】本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘
12、以或除以同一个负数时,不等号的方向改变”是解题的关键.8、B【分析】根据不等式的性质可得,由此求出的取值范围【详解】解:不等式的解集为,不等式两边同时除以时不等号的方向改变,故选:B【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变9、C【分析】根据数轴上数的大小关系解答【详解】解:解集为x1,那么在数轴上表示正确的是C,故选:C【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键10、A【分析】先解不等式,再利用数轴的性质解答【详解】解:解得,不等式的解集在数轴上表示为:故选:A【点睛】此题考
13、查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键二、填空题1、【分析】先移项,然后系数化为1,即可求出不等式的解集【详解】解:,故答案为:【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键2、18【分析】设小明答对了x道题,则答错了(253x)道题,根据总分4答对题目数2答错题目数,结合成绩超过60分,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中最小正整数即可得出结论【详解】设小明答对了x道题,则答错了(253x)道题,依题意,得:4x2(253x)60,解得:x17,x为正整数,x的最小值为18,故答案为18【点睛】本题
14、考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键3、x+410x10【分析】首先表示x与4的和,再表示小于10即可【详解】解:根据题意得:x+410故答案为:x+410【点睛】本题考查由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式4、2【分析】首先根据定义确定出代数式的范围,建立不等式组,从而求解不等式即可【详解】解:根据定义可知:,解得:,x的最大值为2,故答案为:2【点睛】本题考查新定义问题,准确将题干信息转化为不等式组并求解是解题关键5、140【分析】设一个红心猕猴桃的成
15、本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,然后由题意易得,则有甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,进而可得甲的利润为元,乙的利润为元,利润率为,丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,则根据“订单的利润率为”列出方程,最后根据“预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间”来求解即可【详解】解:设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,由题意得:,解得:,甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成
16、本价为元,甲的利润为元,乙的利润为元,则有它的利润率为,进而可得丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,由题意得:,化简得:,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间,即,解得:,m为正整数,m的值可能为36、37、38、39、40、41、42、43、44,n为正整数,是6的倍数,该单位一共有80+40+20=140(名);故答案为140【点睛】本题主要考查三元一次方程组的应用及一元一次不等式的应用,熟练掌握利用消元思想及不定方程的求解方法是解题的关键三、解答题1、(1)甲种商品至少购进32件;(2)甲种商品最多购进40件【解析】【分析】(1
17、)先根据题意用含x的式子表示出y,再列不等式可得答案;(2)根据甲、乙、丙的进价和售价列出不等式,再解不等式可得答案【详解】解:(1)根据题意,得40x+70y+90(100-x-y)=6800,解得y110x,乙种商品数量不超过甲种商品数量,yx,110xx,解得x31答:甲种商品至少购进32件;(2)根据题意,得20x+30y+40(100-x-y)3100,由(1),得y110x,代入不等式,解得x40,答:甲种商品最多购进40件【点睛】本题考查一元一次不等式的实际应用,能够根据题意用含x的式子表示出y是解题关键2、(1)2m3;(2)1【解析】【分析】(1)先求出二元一次方程组的解为,
18、然后根据x为非正数,y为负数,即x0,y0,列出不等式求解即可;(2)先把原不等式移项得到(2m+1)x2m+1根据不等式(2m+1)x2m1的解为x1,可得2m+10,由此结合(1)所求进行求解即可【详解】解:(1)解方程组用+得:,解得,把代入中得:,解得,方程组的解为:x为非正数,y为负数,即x0,y0,解得2m3;(2)(2m+1)x2m1移项得:(2m+1)x2m+1不等式(2m+1)x2m1的解为x1,2m+10,解得m又2m3,m的取值范围是2m又m是整数,m的值为1【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法3
19、、【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】解:解不等式3x+2x得:x-1,解不等式,得:,则不等式组的解集为:【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键4、(1)x1;(2)x7【解析】【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解答;(2)先分别解不等式,即可得到不等式组的解集【详解】解:(1)去括号,得:2x114x12+3,移项,得:2x4x12+3+11,合并同类项,得:2x2
20、,系数化为1,得:x1;(2)解不等式得:x,解不等式得:x7,则不等式组的解集为x7【点睛】此题考查了解一元一次不等式及不等式组,正确掌握不等式的性质计算是解题的关键5、(1)8;(2)见解析;(3)10461,11451,12441【解析】【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示,根据要求列代数式得=,说明括号中的数为整式即可;(3)设五位“两头蛇数”为(),先求出16的真因数之和15,找到16的亲和数为 ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为,可得能被33整除,根据,且,得出能被33整除得出即可【详解】.解:(
21、1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2),=,=,又因为,的整数,为整数, 一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为(),末位数为1,不能被2(真因数)整除,16的真因数之和,16的亲和数为 ,能被33整除,能被33整除,又2不能被33整除,能被33整除,且,或. 或(舍去),或或,所以五位“两头蛇数”为10461,11451,12441【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键