《难点详解京改版八年级数学下册第十四章一次函数章节测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十四章一次函数章节测试练习题(无超纲).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点A(a+9,2a+6)在y轴上,a的值为()A9B9C3D32、已知一次函数yaxb(a0)的图象经过点(
2、0,1)和(1,3),则ba的值为( )A1B0C1D23、已知函数和 的图象交于点P(-2,-1),则关于x,y的二元一次方程组的解是()ABCD4、变量,有如下关系:;其中是的函数的是( )ABCD5、平面直角坐标系中,点P(2022,a)(其中a为任意实数),一定不在( )A第一象限B第二象限C直线y=x上D坐标轴上6、一次函数的一般形式是(k,b是常数)( )Ay=kx+bBy=kxCy=kx+b(k0)Dy=x7、一个一次函数图象与直线yx平行,且过点(1,25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )A4个B5个C6个D7个
3、8、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )ABC3D9、下列命题中,真命题是( )A若一个三角形的三边长分别是a、b、c,则有B(6,0)是第一象限内的点C所有的无限小数都是无理数D正比例函数()的图象是一条经过原点(0,0)的直线10、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是()A BC D第卷(非选择题 70分)二、填空题(5
4、小题,每小题4分,共计20分)1、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示则小明家与学校之间的距离是_米2、点P(2,4)在正比例函数ykx(k是常数,且k0)的图象上,则k_3
5、、平面直角坐标系中,点P(3,4)到x轴的距离是_4、若y关于x的函数y7x2m是正比例函数,则m_5、点A为直线上的一点,且到两坐标轴距离相等,则A点坐标为_三、解答题(5小题,每小题10分,共计50分)1、一次试验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂砝码的质量x(g)的一组对应值(在弹性限度内):x(g)012345y(cm)182022242628(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是函数?(2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的长度是多少?(3)砝码质量每增加1g,弹簧的长度增加_cm2、如图(1)敌方战
6、舰C和我方战舰2号在我方潜艇什么方向?(2)如何确定敌方战舰B的位置?3、已知y与x1成正比例,且当x3时,y4(1)求出y与x之间的函数解析式;(2)当x1时,求y的值4、如图,在平面直角坐标系中,点O为坐标原点,点A在y轴上,点B,C在x轴上,(1)求线段AC的长;(2)点P从C点出发沿射线CA以每秒2个单位长度的速度运动,过点A作,点F在y轴的左侧,过点F作轴,垂足为E,设点P的运动时间为t秒,请用含t的式子表示EF的长;(3)在(2)的条件下,直线BP交y轴于点K,当时,求t的值,并求出点P的坐标5、利用几何图形研究代数问题是建立几何直观的有效途径(1)如图,点A的坐标为(4,6),点
7、B为直线yx在第一象限的图象上一点,坐标为(b,b)AB2可表示为 ;(用含b的代数式表示)当AB长度最小时,求点B的坐标(2)借助图形,解决问题:对于给定的两个数x,y,求使(xb)2(yb)2达到最小的b-参考答案-一、单选题1、A【解析】【分析】根据y轴上点的横坐标为0列式计算即可得解【详解】解:点A(a+9,2a+6)在y轴上,a+9=0,解得:a=-9,故选:A【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键2、A【解析】【分析】用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值【详解】解:把点(0,1)和(1,3)代入yax+b,得:,解得,ba1
8、21故选:A【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键3、B【解析】【分析】由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解【详解】解:函数yax-3和ykx的图象交于点P的坐标为(-2,1),关于x,y的二元一次方程组的解是故选B【点睛】本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键4、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可【详解】解:满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x
9、的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;,当时,则y不是x的函数;综上,是函数的有故选:B【点睛】本题主要考查了函数的定义在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数5、B【解析】【分析】对取不同值进行验证分析即可【详解】解:A、当,点P在第一象限,故A不符合题意B、由于横坐标为,点P一定不在第二象限,故B符合题意C、当,点P在直线y=x上,故C不符合题意D、当时,点P在x轴上,故D不符合题意故选:B【点睛】本题主要是考查了横纵坐标的取值
10、与其在直角坐标系中的位置关系,熟练根据横纵坐标的不同取值,判断坐标点所在的位置,是解决该题的关键6、C【解析】【分析】根据一次函数的概念填写即可【详解】解:把形如y=kx+b(k,b是常数,k0)的函数,叫做一次函数,故选:C【点睛】本题考查了一次函数的概念,做题的关键是注意k07、A【解析】【分析】由题意可得:求出符合条件的直线为5x4y750,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案【详解】解:设直线AB的解析式为ykxb,一次函数图象与直线yx平行,
11、k,又所求直线过点(1,25),25(1)b,解得b,直线AB为yx,此直线与与x轴、y轴的交点分别为A(15,0)、B(0,),设在直线AB上并且横、纵坐标都是整数的点的横坐标是x14N,纵坐标是y255N,(N是整数)因为在线段AB上这样的点应满足0x14N15,且y255N0,解得:N4,所以N1,2,3,4共4个,故选:A【点睛】本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键8、D【解析】【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增
12、大而减小,利用一次函数的性质可得出m-20,解之即可得出m2,进而可得出m=-3【详解】解:一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),m2-3=6,即m2=9,解得:m=-3或m=3又y的值随着x的值的增大而减小,m-20,m2,m=-3故选:D【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键9、D【解析】【分析】根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解【详解】解:A、若一个三角形的三边长分别是a、b、
13、c,不一定有,则原命题是假命题,故本选项不符合题意;B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;C、无限不循环小数都是无理数, D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键10、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0x、x、x2三段求出函数关系式,进而得到当x=时,y=80,结合函数
14、图象即可求解【详解】解:当两车相遇时,所用时间为120(60+90)=小时, B车到达甲地时间为12090=小时,A车到达乙地时间为12060=2小时,当0x时,y=120-60x-90x=-150x+120;当x时,y=60(x-)+90(x-)=150x-120;当x2是,y=60x;由函数解析式的当x=时,y=150-120=80故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键二、填空题1、1760【解析】【分析】根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度【详解】解:小明离
15、家2分钟走了160米,小明初始速度为160280米/分;小明返回家速度为802160米/分,妈妈继续行进速度80240米/分;小明在家换衣服3分钟时间,妈妈走了403120米,设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,则有160t1200+120+40t,t11,小明离家距离为111601760米故答案为:1760米【点睛】本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据2、2【解析】【分析】把点P(2,4)代入正比例函数ykx中可得k的值.【详解】解:点P(2,4)在正比例函数ykx(k是常数,且k0)的图象上,42k,解得:k2,故答案为:2.
16、【点睛】本题考查了用待定系数法求正比例函数解析式,经过函数的某点一定在函数的图象上,理解正比例函数的定义是解题的关键3、4【解析】【分析】根据点的坐标表示方法得到点P(3,4)到x轴的距离是纵坐标的绝对值即|4|,然后去绝对值即可【详解】解:点P(3,-4)到x轴的距离为|4|=4故答案为:4【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键4、2【解析】【分析】根据正比例函数的定义得到2m0,然后解方程得m的值【详解】解:y关于x的函数y7x2m是正比例函数,2m0,解得m2故答案为2【点睛】本题考查了正比例函数的定义,掌握正比例函数的定义是解题的关键形如是正比例函数5、
17、,【解析】【分析】根据点A为直线y3x4上的一点,且到两坐标轴距离相等可得出x|y|,求出x、y的值即可【详解】解:点A为直线y3x4上的一点,且到两坐标轴距离相等,|x|y|,xy或xy当xy时,3x4x,解得x1,A(1,1);当xy时,3x4x,解得x2,y2,A(2,2);A(1,1)或(2,2)故答案为:(1,1)或(2,2)【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键三、解答题1、 (1)弹簧长度与所挂砝码质量;所挂砝码质量是自变量,弹簧长度是所挂砝码质量的函数;(2) 18cm; 24cm; (3) 2cm【解
18、析】【分析】(1)表中的数据主要涉及到所挂物体的质量和弹簧的长度,可知反映变量的关系;悬挂砝码的质量发生变化引起弹簧长度的变化,故可知自变量;知函数关系;(2)弹簧原长即未悬挂砝码时的长度,看表可知;悬挂砝码质量为3g时弹簧的长度,看表可知;(3)由表中的数据可知,时,y=18;时,y=20等数据,据此判断砝码质量每增加1g,弹簧增加的长度【详解】解:(1)表中反映了弹簧长度与所挂砝码质量之间的关系;其中所挂砝码质量是自变量,弹簧长度是所挂砝码质量的函数(2)弹簧的原长是18cm;悬挂砝码质量为3g时,弹簧的长度是24cm(3)x1=0,y1=18,x2=1,y2=20,y2-y1=2;x3=
19、2,y3=22,y3-y2=2;x4=3,y4=24,y4-y3=2;x5=4,y5=26,y5-y4=2;据此判断砝码质量每增加1g,弹簧增加的长度为cm【点睛】本题考查了一次函数解题的关键与难点在于找到函数关系2、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据【解析】【分析】(1)根据图中的位置与方向即可确定(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少【详解】(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方(2)仅知道在我方潜艇北偏东40方向有小岛,而要确定敌方战舰
20、B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据【点睛】本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角3、(1)y2x2;(2)0【解析】【分析】(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;(2)利用(1)中关系式求出自变量为1时对应的函数值即可【详解】解:(1)设yk(x1),把x3,y4代入得(31)k4,解得k2,所以y2(x1),即y2x2;(2)当x1时,y2120【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b
21、;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式4、(1)8,(2)见解析,(3)(,)或(,);【解析】【分析】(1)根据30角所对直角边等于斜边一半,求出OA长,即可求AC长;(2)作PGOA于G,证AFEPAG,得出,用含t的式子表示AG的长即可;(3)作PNOB于N,证RtBOKRtAOC,得出,求出AP的长即可求t的值,求出NP、ON的长即可求坐标【详解】解:(1),;(2)作PGOA于G,当点P在线段CA上时,CP=2t,AP=8-2t,AFEPAG,;当点P在线段CA延长线上时,C
22、P=2t,AP=2t -8,同理可得AFEPAG,(3)作PNOB于N,如图,RtBOKRtAOC, , ,此时,点P在线段CA延长线上,;,PNOB,点P的坐标为(,)如图,同理可知RtBOKRtAOC,同理可得,点P的坐标为(,);综上,点P的坐标为(,)或(,);【点睛】本题考查了全等三角形的判定与性质,含30角的直角三角形的性质,解题关键是恰当作辅助线,通过证明三角形全等,得出线段之间的关系5、(1)2b220b+52;B(5,5);(2)(x+y)【解析】【分析】(1)由平面直角坐标系中两点间距离公式可直接得到;利用配方法及平方的非负性可求得最小值;(2)由“垂线段最短”可求得最小值
23、【详解】解:(1)点A的坐标为(4,6),点B坐标为(b,b),AB2(4b)2+(6b)22b220b+52;故答案为:2b220b+52AB22b220b+522(b5)2+2,(b5)20,当(b5)20时,即b5时,AB最小,此时B(5,5);(2)如图,设A(x,y),B(b,b),则点B在直线yx上,欲求(xb)2+(yb)2的最小值,只要在直线yx上找到一点B(b0,b0),使得AB的值最小即可根据垂线段最短可知,当AB直线yx时,(xb)2+(yb)2的有最小值(xb)2+(yb)2(xb0+b0b)2+(yb0+b0b)2(xb0)2+(yb0)2+2(xb0)+(yb0)(b0b)+2(b0b)2,由图,我们可以把(xb)2+(yb)2看作AB2,(xb0)2+(yb0)2看作AB2,2(b0b)2可以看作BB2,由勾股定理可知:2(xb0)+(yb0)(b0b)0,xb0+yb00,b0(x+y)即使(xb)2+(yb)2达到最小的b为(x+y)【点睛】本题考查勾股定理,规律型问题,两点之间距离公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题