《备考练习2022年中考数学二模试题(含答案详解).docx》由会员分享,可在线阅读,更多相关《备考练习2022年中考数学二模试题(含答案详解).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年中考数学二模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法: (1)“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆定理
2、;(2)命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;(3)命题“如果-a=5,那么a=-5”的逆命题为“如果-a-5,那么a-5”,其中正确的有( )A0个B1 个C2个D3个2、下列说法中正确的个数是( )两点之间的所有连线中,线段最短;相等的角是对顶角;过一点有且仅有一条直线与己知直线平行;两点之间的距离是两点间的线段;若,则点为线段的中点;不相交的两条直线叫做平行线。A个B个C个D个3、无论a取什么值时,下列分式总有意义的是( )ABCD4、某农场开挖一条480m的渠道,开工后,每天比原计划多挖20m,结果提前4天完成任务,若设原计划每天挖xm,那么所列方程正确的是( )A
3、= 4B= 20C= 4D= 205、下列计算: 0(5)=0+(5)=5; 534=512=7; 43()=4(1)=4; 122(1)2=1+2=3其中错误的有()A1个B2个C3个D4个6、方程的解为( )ABCD无解7、如图,正方形的边长,分别以点,为圆心,长为半径画弧,两弧交于点,则的长是( )ABCD8、直线,按照如图所示的方式摆放,与相交于点,将直线绕点按照逆时针方向旋转 ()后,则的值为( )ABCD9、如果是一元二次方程的一个根,那么常数是( )A2B-2C4D-4 线 封 密 内 号学级年名姓 线 封 密 外 10、某件商品先按成本价加价50%后标价,再以九折出售,售价为1
4、35元,若设这件商品的成本价是x元,根据题意,可得到的方程是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_.2、如图,、是线段上的两点,且是线段的中点若,则的长为_3、已知与互为相反数,则的值是_4、的最简公分母是_5、已知,那么它的余角是_,它的补角是_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,抛物线与轴交于点,(在的左侧)(1)抛物线的对称轴为直线,求抛物线的表达式;(2)将(1)中的抛物线,向左平移两个单位后再向下平移,得到的抛物线经过点,且与正半轴交于点,记平移后的抛物线顶点为,若是等腰直角三角形,求点的坐标;
5、(3)当时,抛物线上有两点和,若,试判断与的大小,并说明理由2、如图,在平面直角坐标系中,抛物线与直线交于,两点,其中, 线 封 密 内 号学级年名姓 线 封 密 外 (1)求该抛物线的函数表达式;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,过点和点分别作轴的平行线交直线于点和点,连接,求四边形面积的最大值;(3)在(2)的条件下,将抛物线沿射线平移个单位,得到新的抛物线,点为点的对应点,点为的对称轴上任意一点,点为平面直角坐标系内一点,当点,构成以为边的菱形时,直接写出所有符合条件的点的坐标,并任选其中一个点的坐标,写出求解过程3、已知抛物线的顶点为,且过点(1)
6、求抛物线的解析式;(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围4、数轴上点A表示8,点B表示6,点C表示12,点D表示18如图,将数轴在原点O和点B,C处各折一下,得到一条“折线数轴”在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离例如,点A和点D在折线数轴上的和谐距离为个单位长度动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M
7、从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动其中一点到达终点时,两点都停止运动设运动的时间为t秒(1)当秒时,M、N两点在折线数轴上的和谐距离为_;(2)当点M、N都运动到折线段上时,O、M两点间的和谐距离_(用含有t的代数式表示);C、N两点间的和谐距离_(用含有t的代数式表示);_时,M、N两点相遇;(3)当_时,M、N两点在折线数轴上的和谐距离为4个单位长度;(4)当_时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等5、(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合研究数轴发现:如图所示的
8、数轴上,点O为原点,点A、B表示的数分别是a和b,点B在点A的右边(即),则A、B两点之间的距离(即线段的长)(问题情境)如图所示,数轴上点A表示的数,点B表示的数为,线段的中点C表示的数为x点M从点A出发,以每秒2个单位长度的速度沿数轴向右运动;同时点N从点B出发,以每秒3个单位的速度沿数轴向左运动设运动时间为t秒 线 封 密 内 号学级年名姓 线 封 密 外 (综合运用)根据“背景知识”和“问题情境”解答下列问题:(1)填空:A、B两点之间的距离_,线段的中点C表示的数_用含t的代数式表示:t秒后,点M表示的数为_;点N表示的数为_(2)求当t为何值时,点M运动到线段的中点C,并求出此时点
9、N所表示的数(3)求当t为何值时,-参考答案-一、单选题1、B【分析】分别写出各命题的逆命题,然后用相关知识判断真假.【详解】解:(1)“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆定理,正确;(2)命题“如果两个角相等,那么它们都是直角”的逆命题是“如果两个角都是直角,那么它们相等”,是真命题,故错误;(3)命题“如果-a=5,那么a=-5”的逆命题为“如果a=-5,那么-a=5”,故错误;正确的有1个,故选B.【点睛】本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理2、D【分析】本题属于基础应用题,只
10、需学生熟练掌握平面图形的基本概念,即可完成.【详解】两点之间的所有连线中,线段最短,正确;相等的角不一定是对顶角,但对顶角相等,故本小题错误;过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;两点之间线段的长度,叫做这两点之间的距离,故本小题错误;若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误;在同一平面内,不相交的两条直线叫做平行线,故本小题错误;所以,正确的结论有,共1个故选D【点睛】熟练掌握平面图形的基本概念3、D【分析】根据分式有意义的条件是分母不等于零进行分析即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、当a0时,分式
11、无意义,故此选项错误;B、当a1时,分式无意义,故此选项错误;C、当a1时,分式无意义,故此选项错误;D、无论a为何值,分式都有意义,故此选项正确;故选D【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零4、C【分析】设原计划每天挖xm,根据结果提前4天完成任务列方程即可【详解】解:设原计划每天挖xm,由题意得= 4故选C【点睛】本题考查了列分式方程解实际问题的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤5、C【分析】根据有理数的减法法则可判断;先算乘法、再算减法,可判断;根据有理数的乘除运算法则可判断;根据有理数的混合运
12、算法则可判断,进而可得答案.【详解】解:,所以运算错误;,所以运算正确;43()=4()=,所以运算错误;122(1)2=121=3,所以运算错误综上,运算错误的共有3个,故选:C.【点睛】本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.6、D【分析】先去分母,把分式方程转化为整式方程,然后求解即可【详解】解:去分母得,解得,经检验,是原分式方程的增根,所以原分式方程无解故选D【点睛】本题主要考查分式方程的求解,熟练掌握分式方程的求解是解题的关键7、A 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据条件可以得到ABE是等边三角形,可求EBC=30,
13、然后利用弧长公式即可求解【详解】解:连接,是等边三角形,的长为故选A【点睛】本题考查了正方形性质,弧长的计算公式,正确得到ABE是等边三角形是关键. 如果扇形的圆心角是n,扇形的半径是R,则扇形的弧长l的计算公式为:8、C【分析】先求出O的度数,再根据垂直的定义即可得到旋转的度数.【详解】解:根据三角形外角的性质可得O=140-80=60,已知将直线绕点按照逆时针方向旋转 ()后,故n=90-60=30.故选C.【点睛】本题考查三角形的相关知识,掌握三角形内角和定理和三角形外角的性质是解题关键.9、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数
14、代替未知数所得式子仍然成立【详解】把x=2代入方程x2=c可得:c=4故选C【点睛】本题考查的是一元二次方程的根即方程的解的定义10、A【分析】设这件商品的成本价为x元,售价=标价90%,据此列方程【详解】解:标价为,九折出售的价格为,可列方程为 线 封 密 内 号学级年名姓 线 封 密 外 故选:A【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程二、填空题1、【分析】根据条件|m|=m+1进行分析,m的取值可分三种条件讨论,m为正数,m为负数,m为0,讨论可得m的值,代入计算即可【详解】解:根据题意,可得m的取值有三种,分别是:
15、当m0时,则可转换为m=m+1,此种情况不成立当m=0时,则可转换为0=0+1,此种情况不成立当m0时,则可转换为-m=m+1,解得,m=将m的值代入,则可得(4m+1)2011=4()+12011=-1故答案为:-1【点睛】本题考查了含绝对值符号的一元一次方程和代数式的求值解题时,要注意采用分类讨论的数学思想2、【分析】利用已知得出AC的长,再利用中点的性质得出AD的长【详解】解:AB=10cm,BC=4cm,AC=6cm,D是线段AC的中点,AD=3cm故答案为:3cm【点睛】此题主要考查了线段长度的计算问题与线段中点的概念,得出AC的长是解题关键3、【分析】首先根据与互为相反数,可得+=
16、0,进而得出,然后用含的代数式表示,再代入求值即可【详解】解:与互为相反数,+=0, 故答案为:【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得与之间的关系是解题关键 线 封 密 内 号学级年名姓 线 封 密 外 4、【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母【详解】解:的分母分别是xy、4x3、6xyz,故最简公分母是故答案为【点睛】本题考查了最简公分母的定义及求法通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母
17、叫做最简公分母一般方法:如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂5、 【分析】根据余角、补角的性质即可求解【详解】解:,故答案为,【点睛】此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键三、解答题1、(1)(2)(3)【分析】(1)根据对称性求得点的坐标,进而设抛物线交点式即可求得解析式;(2)根据对称性以及等腰直角三角形的性质即可求得点的坐标;(3)根据,求得对称轴,根据抛物线开口向
18、下,离对称轴越远的点,其函数值越大,据此分析即可(1),且抛物线与轴交于点,在的左侧设解得设抛物线的解析式为又, 线 封 密 内 号学级年名姓 线 封 密 外 即(2)抛物线的对称轴为将抛物线向左平移2个单位,则新抛物线的对称轴为关于对称设是等腰直角三角形都小于90是直角解得根据函数图象可知当时不合题意,舍去 (3),和在抛物线上,则点离抛物线的对称轴更近,【点睛】本题考查了待定系数法求抛物线的解析式,二次函数的平移,二次函数的性质,掌握二次函数的性质是解题的关键2、(1)抛物线表达式为;(2)当时,S四边形PQDC最大=;(3)所有符合条件的点的坐标()或()或()或()【分析】(1)利用待
19、定系数法求抛物线解析式抛物线过,两点,代入坐标得: 线 封 密 内 号学级年名姓 线 封 密 外 ,解方程组即可;(2)根据点的横坐标为,点的横坐标为,得出,解不等式组得出,用m表示点P,点Q,用待定系数法求出AB解析式为,用m表示点C,点D,利用两点距离公式求出PC=,QD=,利用梯形面积公式求出S四边形PQDC=即可;(3)根据勾股定理求出AB=,将抛物线配方,根据平移,得出抛物线向右平移4个单位,再向下平移2个单位, 求出新抛物线,根据, 求出点P,与对应点E,平移后新抛物线对称轴为,设点G坐标为,点F()分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,求出点F(),(
20、),当点F()时,点G、F、E、B坐标满足,得出 G(),点F()时,点G3、F、E、B坐标满足, ,得出G3(),四边形BEFG为菱形,BE=BF,根据勾股定理,点F(),(),点F()时,点G1、F、E、B坐标满足, ,得出 G1(),点F()时,点G2、F、E、B坐标满足,得出G2()【详解】解:(1)抛物线过,两点,代入坐标得:,解得:,抛物线表达式为;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,解得,点P,点Q设AB解析式为,代入坐标得:,解得:,AB解析式为,点C,点DPC=,QD= 线 封 密 内 号学级年名姓 线 封 密 外 S四边形PQDC=,当时
21、,S四边形PQDC最大=;(3)AB=,抛物线向右平移4个单位,再向下平移2个单位, ,点P,对应点E,平移后新抛物线对称轴为,设点G坐标为,点F(),分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,或,点F(),(),当点F()时,点G、F、E、B坐标满足:,解得,解得,G();点F()时,点G3、F、E、B坐标满足:,解得,解得,G3(); 线 封 密 内 号学级年名姓 线 封 密 外 四边形BEFG为菱形,BE=BF,根据勾股定理,或,点F(),(),点F()时,点G1、F、E、B坐标满足:,解得,解得,G1();点F()时,点G2、F、E、B坐标满足:,解得,解得,G
22、2(),综合所有符合条件的点的坐标()或()或()或()【点睛】本题考查待定系数法求抛物线解析式与直线解析式,两点距离,梯形面积,二次函数顶点式最值,抛物线平移,菱形性质,图形与坐标,本题难度大,解题复杂,计算要求非常准确,考查学生多方面能力,知识掌握情况,阅读,分类,数形结合,运算,画图是中考难题3、(1)(2)【分析】(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;(2)平移后的解析式为,可知对称轴为直线,设点坐标到对称轴距离为,有点坐标到对称轴距离为,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;由题意知该抛物线图像开口向 线 封 密 内 号学级年名姓
23、线 封 密 外 上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可(1)解:的顶点式为由题意得解得(舍去),抛物线的解析式为(2)解:平移后的解析式为对称轴为直线设点坐标到对称轴距离为,点坐标到对称轴距离为,解得点坐标为将代入解析式解得的值为8解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,解得 时,均有解得的取值范围为【点睛】本题考查了二次函数的解析式、图象的平移与性质、与x轴的交点坐标等知识解题的关键在于对二次函数知识的熟练灵活把握4、(1)12(2)2(t-2);3t-6;4.4(3)当t=5.2或3.6秒时,M、N两点
24、在折线数轴上的和谐距离为4个单位长度;(4)当t=3.2或8秒时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等【分析】(1)先求得点M表示的数为0,点N表示的数为12,据此即可求解;(2)先求得点M表示的数为2(t-2),点N表示的数为18-3t,据此即可求解;(3)根据题意列出方程|2(t-2) - (18-3t)|=4,即可求解; 线 封 密 内 号学级年名姓 线 封 密 外 (4)分点M在OA上,OBC上,CD上三种情况讨论,列出方程求解即可(1)解:t=2时,点M表示的数为4t-8=0,点N表示的数为18-3t=12,|MN|=|12-0|=12;故答案为:1
25、2;(2)点N到达原点的时间为(秒),点M、N都运动到折线段OBC上,即2t6,点M表示的数为2(t-2),点N表示的数为18-3t,O、M两点间的和谐距离|OM|=2(t-2);C、N两点间的和谐距离|CN|=|12-(18-3t)|=3t-6;当2(t-2)= 18-3t时,M、N两点相遇,解得:t=4.4,当t=4.4秒时,M、N两点相遇;故答案为:2(t-2);3t-6;4.4;(3)当点M在OA上或在CD上即0t2或t时,由(1)知,不存在和谐距离为4个单位长度;当点M运动到折线段OBC上,即2t8,依题意得:|2(t-2) - (18-3t)|=4,解得:t=5.2或t=3.6,当
26、t=5.2或3.6秒时,M、N两点在折线数轴上的和谐距离为4个单位长度;(4)当点M在OA上即0t2时,点M表示的数为4t-8,点N表示的数为18-3t,依题意得:0-(4t-8)=18-3t-6,解得:t=-4(不合题意,舍去);当点M在折线段OBC上,即2t8时,点M表示的数为2(t-2),点N表示的数为18-3t,依题意得:2(t-2)-0=|18-3t-6|,解得:t=3.2或t=8;当点M在CD上即8t时,点M表示的数为4(t-8),点N表示的数为18-3t,依题意得:4(t-8)-0=6-(18-3t),解得:t=20(不合题意,舍去);综上,当t=3.2或8秒时,M、O两点在折线
27、数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等【点睛】本题综合考查了数轴与有理数的关系,一元一次方程在数轴上的应用,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用5、(1)10,-12t-6;4-3t;(2);(3)t=1或t=3【分析】(1)根据公式,代入计算即可根据距离公式,变形表示即可;(2)准确表示点M表示的数,点N表示的数,点C表示的数为-1,列式计算即可; 线 封 密 内 号学级年名姓 线 封 密 外 (3)根据距离公式,化成绝对值问题求解即可(1)数轴上点A表示的数,点B表示的数为,AB=|-6-4|=10;线段的中点C表示的数为x,4-x=x+6,解
28、得x=-1,故答案为:10,-1根据题意,得M的运动单位为2t个,N的运动单位为3t个,数轴上点A表示的数,点B表示的数为,点M表示的数为2t-6;点N表示的数为4-3t故答案为:2t-6;4-3t(2)点M表示的数为2t-6,且点C表示的数为-1,2t-6=-1,解得t=;此时,点N表示的数为4-3t=4-=(3)点M表示的数为2t-6;点N表示的数为4-3t,MN=|2t-6-4+3t|=5|t-2|,AB=10,5|t-2|=5,解得t=1或t=3故当t=1或t=3时,【点睛】本题考查了数轴上两点间的距离,数轴上点表示有理数,绝对值的化简,正确理解两点间的距离公式,灵活进行绝对值的化简是解题的关键