《基础强化京改版九年级数学下册第二十五章-概率的求法与应用定向测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《基础强化京改版九年级数学下册第二十五章-概率的求法与应用定向测试练习题(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108,当宇宙中一块陨石落在地
2、球上,则落在陆地上的概率是( )A0.2B0.3C0.4D0.52、如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么指针同时落在偶数的概率是( )ABCD3、某市教委高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是( )ABCD4、一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机搭配在一起,则颜色搭配正确的概率是( )ABCD5、在一
3、个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是()ABCD6、某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球B任意写一个整数,它能被2整除C掷一枚正六面体的骰子,出现1点朝上D先后两次掷一枚质地均匀的硬币,两次都出现反面7、小明语数英的科目成绩的排序为语文数学英语到家后,小明妈妈从小明书包依次抽2张试卷,若第二次抽到的试卷比第一次抽到的试卷成绩高的话,则小明可以获
4、得奖励请问小明获得奖励的概率为( )ABCD8、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )ABCD9、如图,直线,直线c与直线a、b都相交,从,这四个角中任意选取2个角,则所选取的2个角互为补角的概率是( )ABCD10、一个袋中装有红、黑、黄三种颜色小球共15个,这些球除颜色外均相同,其中红色球有4个,若从袋中任意取出一个球,取出黄色球的概率为,则黑色球的个数为()A3B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x(元)统计如表:组
5、别(元)0x3030x5050x60x60人数16313320根据以上结果,随机抽取该校一名学生,估计该学生每周的零花钱在60以上(包含60)的概率为_2、在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有_个3、一个口袋中有8个黑球和若干个白球,从口袋中随机摸出一球,记下颜色,再放回口袋,不断重复上述过程,共做了200次,其中50次摸到黑球,因此估计袋中白球有_个4、某农科所为了了解新玉米种子的出芽情况,在推广前做了五次出芽实验,在相同的培育环境中分别实验,实验具体情况记录如下:种子数量10030050010003000出芽数量99
6、2824809802910随着实验种子数量的增加,可以估计A种子出芽的概率是 _5、小明训练飞镖,在木板上画了直径为20cm和30cm的同心圆,如图,他在距木板5米开外将一个飞镖随机投掷到该图形内,则飞镖落在阴影区域的概率为 _三、解答题(5小题,每小题10分,共计50分)1、 “每天锻炼一小时,健康生活一辈子”,为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如表:成绩/分78910人数/人2544(1)从这15名领操员中随机抽取1人,得分在9分以上(包括9分)的概率是 ;(2)已知获得10分的4位选手中,七、八、九年级各有1人、2人、1人,学校准备从中
7、抽取两人领操,请用画树状图或列表格的方法,求抽到八年级两名领操员的概率2、某校计划在暑假第二周的星期一至星期五开展社会实践活动,要求每位学生选择两天参加活动(1)甲同学随机选择两天,其中一天是星期五的概率是多少?(2)乙同学随机选择连续的两天,其中一天是星期五的概率是多少?3、在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球(1)用画树状图或列表的方法求从袋中同时摸出的两个球都是黄球的概率;(2)再往袋中放入若干个黑球,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数4、中心广场开展“有奖大酬宾”活动,凡在“中心广场”消费的顾客,均可凭消费小票参与转转盘抽奖活
8、动如图,是一个材质均匀可自由转动的转盘,转盘被等分成A,B,C,D,E五个扇形区域,依次写有:洗衣液、欢迎惠顾、牛奶、优惠券和谢谢参与转动转盘,转盘停止后如果指针所指区域为“洗衣液”、“牛奶”、“优惠券”,则可获得对应的奖品,其他区域则没有奖品若转盘停止后,指针指向两区域的边界,顾客可以再转动转盘一次,直到指针不指向边界时停止根据以上规则,回答下列问题:(1)小王同学转动转盘一次获得奖品的概率是 ;(2)小李同学有两次转转盘抽奖的机会,请你用列表或画树状图的方法,求小李同学至少有一次获得奖品的概率5、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3甲从口袋中随机摸取一个小球,
9、记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(m,n)(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢你认为这个游戏规则公平吗?请说明理由-参考答案-一、单选题1、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定【详解】解:“陆地”部分对应的圆心角是108,“陆地”部分占地球总面积的比例为:108360,宇宙中一块陨石落在地球上,落在陆地的概率是0.3,故选B【点睛】此题主要考查了几何概率,以及扇形统
10、计图用到的知识点为:概率=相应的面积与总面积之比2、B【分析】此题可以采用列表法或者树状图法列举出所有情况,看指针同时落在偶数的情况占总情况的多少即可【详解】解:列表得,1245611,11,21,41,51,622,1,2,2,2,42,52,633,13,23,43,53,644,14,24,44,54,655,15,25,45,55,6共有55=25种可能,指针同时落在偶数的结果有(2,2)、(2,4)、(2,6)、(4,2)、(4,4)、(4,6)共6种,所以指针同时落在偶数的概率是故选:B【点睛】用到的知识点为:概率=所求情况数与总情况数之比;易错点是得到指针同时落在偶数的情况数3、
11、A【分析】利用列表法列举所有的可能性,再由当心低温的图片为轴对称图形得到两张卡片的正面图案中有一张是轴对称图形的有6种,根据公式计算即可求出概率【详解】解:由题意知,当心低温的图片为轴对称图形,列表为:当心水灾1当心山体滑坡2当心低温3当心雷击4当心水灾11,21,31,4当心山体滑坡22,12,32,4当心低温33,13,23,4当心雷击44,14,24,3共有12种等可能的情况,其中两张卡片的正面图案中有一张是轴对称图形的有6种,两张卡片的正面图案中有一张是轴对称图形的概率是=,故选:A【点睛】此题考查了列举法求事件的概率,正确判断轴对称图形,正确列举出所有不同情况是解题的关键4、C【分析
12、】根据概率的计算公式颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出搭配正确的概率即可【详解】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb颜色搭配正确的概率是故选:C【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=5、B【分析】用黑色的小球个数除以球的总个数即可解题【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B【点睛】本题考查概率公
13、式,解题关键是掌握随机事件发生的概率6、A【分析】根据频率图象可知某实验的频率约为0.33,依次求出每个事件的概率进行比较即可得到答案【详解】解:A、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率0.33,符合题意; B、任意写一个整数,它能2被整除的概率为,不符合题意; C、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为0.17,不符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意; 故选:A【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率所求情况数与总情况数之比7、B【分析】画出树状图
14、求解即可【详解】解:分别用A,B,C表示语文,数学,英语的成绩,由题意得,由树状图可知,一共有6种可能的结果,符合题意的结果有3种,所以获得奖励的概率为,故选B【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即8、B【分析】由题意,只要求出阴影部分与矩形的面积比即可【详解】解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为:;故选:B【点睛】本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械
15、计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性用到的知识点为:概率=相应的面积与总面积之比9、B【分析】用列表法列出所有结果数,再求出所选取的2个角互为补角结果数,即可求解【详解】解:从,这四个角中任意选取2个角,列表可得:,共有12种结果,其中所选取的2个角互为补角有6种结果(,)、(,)、(,)、(,)、(,)、(,)所选取的2个角互为补角的概率为故选B【点睛】此题考查了列表法或树状图求概率,涉及了平行线的性质以及补角的定义,解题的关键是掌握列表法或树状图求概率的方法10、C【分析】根据取到黄球的概率求出黄球个数,总数减去红黄球个数,即可得到黑球个数【详解
16、】根据题意可求得黄球个数为:15=6个,所以黑球个数为:15-6-4=5个,故选:C【点睛】本题考查的是概率计算相关知识,熟记概率公式是解答此题的关键二、填空题1、【分析】根据题意先计算出样本中学生每周的零花钱在60以上(包含60)的频率,然后根据利用频率估计概率求解即可【详解】解:该学生每周的零花钱在60以上(包含60)的概率为:.故答案为:.【点睛】本题考查利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值
17、越来越精确2、10【分析】设袋中共有x个球,再由袋中只装有4个红球,且摸出红球的概率为求出x的值即可【详解】解:设袋中共有x个球,袋中只装有4个红球,且摸出红球的概率为,解得x=10经检验,x=10是分式方程的解,且符合题意,故答案为:10【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键3、24【分析】根据频率估计概率得出,黑球的个数占总个数的,列方程求解即可【详解】解:设白球有x个,由题意得,解得x=24(个),经检验,x=24是原方程的解,故答案为:24【点睛】本题考查了利用频率估计概率以及分式方程的解法,理解频率
18、估计概率的意义是正确解得的前提4、【分析】根据概率的公式解题:A种子出芽的概率=A种子出芽数量玉米种子总数量【详解】解:故答案为:【点睛】本题考查概率的意义,大量反复试验下频率稳定值即为概率,随机事件发生的概率在0至1之间5、【分析】首先计算出大圆和小圆的面积,进而可得阴影部分的面积,再求出阴影部分面积与总面积之比即可得到飞镖击中阴影区域的概率【详解】解:大圆面积:()2225(cm2),小圆面积:()2100(cm2),阴影部分面积:225100125(cm2),飞镖落在阴影区域的概率为:故答案为:【点睛】此题主要考查了概率,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中
19、占的比例,这个比例即事件(A)发生的概率三、解答题1、(1);(2)【分析】(1)由于总人数为15人,9分以上的人为8人,由此可知得分在9分以上(包括9分)的概率是;(2)可以利用树状图进行解题即可【详解】解:(1)共有15名领操员,得分在9分(包括9分)以上的领操员有8名,得分在9分(包括9分)以上的概率是;(2)画树状图如下:由树状图可知,共有12种等可能的结果,其中恰好抽到八年级两名领操员的有2中结果,则恰好抽到八年级两名领操员的概率为=【点睛】本题主要考查概率的计算,准确找出事件的相关数量,并会利用树状图或表格进行分析是解题的关键2、(1);(2)【分析】(1)由树状图得出共有20个等
20、可能的结果,其中有一天是星期二的结果有8个,由概率公式即可得出结果;(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五);其中有一天是星期五的结果有1个,由概率公式即可得出结果【详解】解:(1)根据题意画图如下:由树状图可知,共有20个等可能的结果,甲同学随机选择两天,其中有一天是星期五的结果有8个,甲同学随机选择两天,其中有一天是星期五的概率为;(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五),其中有一天是星期五的结果有1个,
21、即(星期四,星期五),乙同学随机选择连续的两天,其中有一天是星期五的概率是【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比3、(1);(2)4【分析】(1)根据题意画出树状图求出所有等可能的结果数和同时摸出的两个球都是黄球的结果数,然后根据概率公式求解即可;(2)设放入袋中的黑球的个数为x,根据从袋中摸出一个球是黑球的概率是,列方程求解即可【详解】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中
22、同时摸出的两个球都是黄球的概率;(2)设放入袋中的黑球的个数为x,根据题意得解得x4,所以放入袋中的黑球的个数为4【点睛】本题考查的是用列表法或画树状图法求概率解题的关键是熟练掌握列表法或画树状图法列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比4、(1);(2)【分析】(1)直接根据概率公式即可得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小李同学获得至少有一次获得奖品的情况,然后根据概率公式即可求得答案【详解】解:(1)转盘被等分成A、B、C、D
23、、E五个扇形区域,转到区域为“洗衣液”、“牛奶”、“优惠券”,则可领到对应的奖品,小王同学转动转盘一次获得奖品的概率是;故答案为:;(2)根据题意画图如下:共有25种等情况数,其中小李同学获得“至少有一次获得奖品”的结果有21种,则小李同学至少有一次获得奖品的概率:【点睛】此题考查的是树状图法求概率,熟练掌握概率公式是解题的关键;用到的知识点为:概率=所求情况数与总情况数之比.5、(1)见解析;(2)这个游戏不公平,理由见解析【分析】(1)根据题意画出树状图进行求解即可;(2)根据(1)所画树状图,先得到所有的等可能性的结果数,然后分别得到小球标号之和为奇数和偶数的结果数,最后分别求出甲乙两人
24、赢的概率即可得到答案【详解】解:(1)列树状图如下所示:由树状图可知(m,n)所有可能出现的结果为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);(2)由(1)得一共有9种等可能性的结果数,其中小球上标号之和为奇数的结果数有(1,2),(2,1),(2,3),(3,2),4种等可能性的结果数,其中小球上标号之和为偶数的结果数有(1,1),(1,3),(2,2),(3,1),(3,3),5种等可能性的结果数,甲赢的概率为,乙赢的概率为,这个游戏不公平【点睛】本题主要考查了画树状图和游戏的公平性,解题的关键在于能够熟练掌握画树状图的方法