知识点详解北师大版七年级数学下册第二章相交线与平行线定向测试试题(含详解).docx

上传人:可****阿 文档编号:32555835 上传时间:2022-08-09 格式:DOCX 页数:22 大小:354.21KB
返回 下载 相关 举报
知识点详解北师大版七年级数学下册第二章相交线与平行线定向测试试题(含详解).docx_第1页
第1页 / 共22页
知识点详解北师大版七年级数学下册第二章相交线与平行线定向测试试题(含详解).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《知识点详解北师大版七年级数学下册第二章相交线与平行线定向测试试题(含详解).docx》由会员分享,可在线阅读,更多相关《知识点详解北师大版七年级数学下册第二章相交线与平行线定向测试试题(含详解).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版七年级数学下册第二章相交线与平行线定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一副直角三角板如图放置,点C在FD的延长线上,ABCF,FACB90,A60,则DBC的度数为( )A45

2、B25C15D202、如图,AOC和BOD都是直角,如果DOC38,那么AOB的度数是()A128B142C38D1523、下列各图中,1与2是对顶角的是( )ABCD4、下列说法中,正确的是()A从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B互相垂直的两条直线不一定相交C直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD过一点有且只有一条直线垂直于已知直线5、已知A37,则A的补角等于()A53B37C63D1436、如图,直线ABCD,直线AB、CD被直线EF所截,交点分别为点M、点N,若AME130,则DNM的度数为( )

3、A30B40C50D607、若的余角为,则的补角为( )ABCD8、下列说法中正确的是()A锐角的2倍是钝角B两点之间的所有连线中,线段最短C相等的角是对顶角D若ACBC,则点C是线段AB的中点9、如图,点C在AOB的OB边上,用尺规作出了NCE=AOD,作图痕迹中,弧FG是( )A以点C为圆心,OD为半径的弧B以点C为圆心,DM为半径的弧C以点E为圆心,OD为半径的弧D以点E为圆心,DM为半径的弧10、下列语句中,错误的个数是( )直线AB和直线BA是两条直线;如果,那么点C是线段AB的中点;两点之间,线段最短;一个角的余角比这个角的补角小A1个B2个C3个D4个第卷(非选择题 70分)二、

4、填空题(5小题,每小题4分,共计20分)1、如图,直线,三角尺(30,60,90)如图摆放,若152,则2的度数为 _2、如图,已知,且1=48,则2_,3_,4_3、如图,OAOB,若15516,则2的度数是 _4、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出1112,接着他准备在点A处画直线若要使,则2的度数为_度5、已知,那么的余角是_三、解答题(5小题,每小题10分,共计50分)1、如图所示,从标有数字的角中找出:(1)直线CD和AB被直线AC所截构成的内错角.(2)直线CD和AC被直线AD所截构成的同位角.(3)直线AC和AB被直线BC所截构成的同旁内角.2、如图,直

5、线AB、CD相交于点O,OE平分BOD,OF平分COE,AOC=76;(1)求DOE的度数;(2)求BOF的度数3、已知,在下列各图中,点O为直线AB上一点,AOC60,直角三角板的直角顶点放在点O处(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则BOC的度数为 ,CON的度数为 ;(2)如图2,三角板一边OM恰好在BOC的角平分线OE上,另一边ON在直线AB的下方,此时BON的度数为 ;(3)在图2中,延长线段NO得到射线OD,如图3,则AOD的度数为 ;DOC与BON的数量关系是DOC BON(填“”、“”或“”);(4)如图4,MNAB,ON在AOC的内部,若另一

6、边OM在直线AB的下方,则COM+AON的度数为 ;AOMCON的度数为 4、小明同学遇到这样一个问题:如图,已知:ABCD,E为AB、CD之间一点,连接BE,ED,得到BED求证:BEDB+D小亮帮助小明给出了该问的证明证明:过点E作EFAB则有BEFBABCDEFCDFEDDBEDBEF+FEDB+D请你参考小亮的思考问题的方法,解决问题:(1)直线l1l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图,若点P在线段CD上,PAC15,PBD40,求APB的度数(2)拓展:如图,若点P在直线EF上,连接PA、PB(BDAC),直接写出PAC、APB

7、、PBD之间的数量关系5、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程(1)1=2(已知) CD( )ABD+CDB = ( )(2)BAC =65,ACD=115,( 已知 ) BAC+ACD=180 (等式性质)ABCD ( )(3)CDAB于D,EFAB于F,BAC=55(已知)ABD=CDF=90( 垂直的定义) (同位角相等,两直线平行)又BAC=55,(已知)ACD = ( )-参考答案-一、单选题1、C【分析】直接利用三角板的特点,结合平行线的性质得出ABD=45,进而得出答案【详解】解:由题意可得:EDF=45,ABC=30,ABCF,AB

8、D=EDF=45,DBC=45-30=15故选:C【点睛】此题主要考查了平行线的性质,根据题意得出ABD的度数是解题关键2、B【分析】首先根据题意求出,然后根据求解即可【详解】解:AOC和BOD都是直角,DOC38,故选:B【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数3、C【分析】根据对顶角的定义作出判断即可【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是故选C【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角4、C【分析】根据点到直线距离的定义分析,可判断选项A和C;根据相

9、交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解5、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解

10、即可【详解】解:A=37,A的补角的度数为180-A=143,故选D【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键6、C【分析】由对顶角得到BMN=130,然后利用平行线的性质,即可得到答案【详解】解:由题意,BMN与AME是对顶角,BMN=AME=130,ABCD,BMN+DNM=180,DNM=50;故选:C【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到BMN=1307、C【分析】根据余角和补角的定义,先求出,再求出它的补角即可【详解】解:的余角为,的补角为,故选:C【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这

11、两个角互为余角,两个角的和为180度,这两个角互为补角8、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20的2倍是40是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质9、D【分析】根据作一个角等于已知角的步骤即可得【详解】解:作图痕迹中,弧FG是以点E为圆心

12、,DM为半径的弧,故选:D【点睛】本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤10、B【分析】根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断【详解】解:直线AB和直线BA是同一条直线,故该项符合题意;如果,那么点C不一定是线段AB的中点,故该项符合题意;两点之间,线段最短,故该项不符合题意;一个角的余角比这个角的补角小,故该项不符合题意,故选:B【点睛】此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型二、填空题1、#【分析】如图,标注字母,过作 再证明证明从而可得答案.【详解】解:如图,标注字母,过作

13、 152, 故答案为:【点睛】本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.2、48 132 48 【分析】根据两直线平行内错角相等可求出2,根据两直线平行,同位角相等可求出4,同旁内角互补可求出3【详解】解: /,1=48,2=1=48, /,1=48,4=1=48, /,3+4=1803=180-4=180-48=132故答案为:48;132;48【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键3、【分析】直接利用垂线的定义得出1+2=90,再求1的余角2,结合度分秒转化得出答案【详解】解:OAOB,AOB90,1+2=90,15

14、516,29055163444故答案为:3444【点睛】本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键4、68【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数【详解】解:练习本的横隔线相互平行,要使,又,即, 故答案为:68【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行5、【分析】直接利用互余两角的关系,结合度分秒的换算得出答案【详解】,的余角为:故答案为:【点睛】此题主要考查了余角的定义和分秒的转换,正确把握相关定义是解题关键三、解答题1、 (1)直线

15、CD和AB被直线AC所截构成的内错角是2和5; (2)直线CD和AC被直线AD所截构成的同位角是1和7;(3)直线AC和AB被直线BC所截构成的同旁内角是3和4【分析】根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.【详解】解:(1)直线CD和AB被直线AC所截构成的内错角是2和5.(2)直线CD和AC被直线AD所截构成的同位角是1和7.(3)直线AC和AB被直线BC所截构成的同旁内角是3和4.【点睛】此题主要考查了三线八角,关键是掌握同位角的

16、边构成F形,内错角的边构成Z形,同旁内角的边构成U形2、(1)38;(2)33【分析】(1)根据对顶角相等得出BOD,再根据角平分线计算DOE;(2)求出DOE的补角COE,再用角平分线得出EOF,最后根据BOF=EOF-BOE求解【详解】解:(1)AOC=76,BOD=AOC=76,OE平分BOD,DOE=BOE=BOD=38;(2)DOE=38,COE=180-DOE=142,OF平分COE,EOF=COE=71,BOF=EOF-BOE=33【点睛】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键3、(1)120;150;(2)30;(3)30,=;(4)150;30【

17、分析】(1)根据AOC=60,利用两角互补可得BOC=18060=120,根据AON=90,利用两角和CON=AOC+AON即可得出结论;(2)根据OM平分BOC,可得出BOM=60,由BOM+BON=MON=90可求得BON的度数;(3)根据对顶角求出AOD=30,根据AOC=60,可得DOC=AOCAOD=6030=30=BON(4)根据垂直可得AON与MNO互余,根据MNO=60(三角板里面的60角),可求AON=9060=30,根据AOC=60,求出CON=AOCAON=6030=30即可【详解】解:(1)AOC=60,BOC与AOC互补,AON=90,BOC=18060=120,CO

18、N=AOC+AON=60+90=150故答案为120;150;(2)三角板一边OM恰好在BOC的角平分线OE上,由(1)得BOC=120,BOM=BOC=60,又MON=BOM+BON=90,BON=9060=30故答案为30;(3)AOD=BON(对顶角),BON=30,AOD=30,又AOC=60,DOC=AOCAOD=6030=30=BON故答案为30,=;(4)MNAB,AON与MNO互余,MNO=60(三角板里面的60角),AON=9060=30,AOC=60,CON=AOCAON=6030=30,COM+AON=MON+2CON=90+230=150,AOMCON=MON2CON=

19、90230=30故答案为150;30【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键4、(1)55;(2)当P在线段CD上时,APB=PAC +PBD;当P在DC延长线上时,APB=PBD-PAC;当P在CD延长线上时,APB=PAC-PBD;【分析】(1)过点P作PGl1,可得APG=PAC=15,由l1l2,可得PGl2,则BPG=PBD=40,即可得到APB=APG+BPG=55;(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可【详解】解:(1)

20、如图所示,过点P作PGl1,APG=PAC=15,l1l2,PGl2,BPG=PBD=40,APB=APG+BPG=55;(2)由(1)可得当P在线段CD上时,APB=PAC +PBD;如图1所示,当P在DC延长线上时,过点P作PGl1,APG=PAC,l1l2,PGl2,BPG=PBD=40,APB=BPG-APG=PBD-PAC;如图2所示,当P在CD延长线上时,过点P作PGl1,APG=PAC,l1l2,PGl2,BPG=PBD=40,APB=APG-BPG=PAC-PBD;综上所述,当P在线段CD上时,APB=PAC +PBD;当P在DC延长线上时,APB=PBD-PAC;当P在CD延

21、长线上时,APB=PAC-PBD【点睛】本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质5、(1)AB;内错角相等,两直线平行;180;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125;两直线平行,同旁内角互补.【分析】(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.【详解】解:(1)1=2 (已知)ABCD(内错角相等,两直线平行)ABD+ BDC =180(两直线平行,同旁内角互补)故答案为:AB;内错角相等,两直线平行;180;两直线平行,同旁内角互补;(2)BAC =65,ACD=115,(已知) BAC+ACD=180 (等式性质 )ABCD (同旁内角互补,两直线平行)故答案为:同旁内角互补,两直线平行;(3)CDAB于D,EFAB于F ,BAC=55,(已知)ABD=CDF=90(垂直的定义)AB CD(同位角相等,两直线平行)又BAC=55,(已知)ACD = 125(两直线平行,同旁内角互补)故答案为:AB;CD;125;两直线平行,同旁内角互补.【点睛】本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁