《2022年最新强化训练沪科版九年级数学下册第26章概率初步专题训练试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练沪科版九年级数学下册第26章概率初步专题训练试题(含答案及详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )A两张
2、卡片的数字之和等于1B两张卡片的数字之和大于1C两张卡片的数字之和等于6D两张卡片的数字之和大于72、下列说法正确的是( )A“明天降雨的概率是80%”表示明天有80%的时间都在降雨B“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上C“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近3、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()ABCD4、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾
3、鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾”你认为池塘主的做法( )A有道理,池中大概有1200尾鱼B无道理C有道理,池中大概有7200尾鱼D有道理,池中大概有1280尾鱼5、 “翻开数学书,恰好翻到第16页”,这个事件是( )A随机事件B必然事件C不可能事件D确定事件6、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )ABCD7、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.
4、6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A0.560B0.580C0.600D0.6208、下列事件,你认为是必然事件的是( )A打开电视机,正在播广告B今天星期二,明天星期三C今年的正月初一,天气一定是晴天D一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的9、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )ABCD10、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别从袋中随机摸出1个球是红球的概率为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某射击运动员在
5、同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以下”的频率通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是_(结果保留小数点后一位)2、一个袋中有形状材料均相同的白球2个、红球3个,任意摸一个球是红球的概率_3、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是_4、某商场举办有奖购物活动,购货满100元者发兑奖券
6、一张,每张奖券获奖的可能性相同在100张奖券中,设一等奖5个,二等奖10个,三等奖20个若小李购货满100元,则她获奖的概率为 _5、一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率_三、解答题(5小题,每小题10分,共计50分)1、学校为了促进垃圾的分类处理,将日常生活中的垃圾分为可回收、厨余和其它三类,分别设置了相应的垃圾箱,“可回收物”箱、“厨余垃圾”箱和“其他垃圾”箱(1)若圆圆把一袋厨余垃圾随机投放,恰好能放对的概率是多少?(2)方方把垃圾分装在三个袋中,可他在投放时有些粗心,每袋垃圾都放错了位置(每个箱中只投放一袋),请你用画树状图的方法求方方把每袋垃圾都放错的
7、概率2、邮票素有“国家名片”之称,方寸之间,包罗万象为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图所示:某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作为奖品,则恰好抽到“冬季两项”的概率是_;(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率3、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的
8、“柑橘损坏率”统计图由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录特级柑橘的售价(元/千克)1415161718特级柑橘的日销售量(千克)1000950900850800 (1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_千克;(2)按此市场调节的观律,若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由4、从1名男生和3名女生中随机抽取参加2022年北京冬季奥运会的志愿
9、者(1)抽取2名,求恰好都是女生的概率;(2)抽取3名,恰好都是女生的概率是 5、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率-参考答案-一、单选题1、C【分析】将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事
10、件、随机事件的概念对选项依次判断即可【详解】解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、D【分析】根据概率的意义去判断即可【详解】“明天降雨的概率是80%”表示明天有降雨的可能性是
11、80%,A说法错误;抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,B说法错误;“彩票中奖的概率是1%”表示中奖的可能性是1%,C说法错误;“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,D说法正确;故选D【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键3、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:故选:B【点睛】本题主要
12、考查了树状图法求概率,解题的关键是根据题意画出树状图4、A【分析】设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程的解;池塘主的做法有道理,池中大概有1200尾鱼;故选A【点睛】本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键5、A【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.【详解】解:“翻开数学书,恰好翻到第16页”,这个事件是随机事件;故选A【点睛】本题考查的是确定事件与随机事件的概念,确定事件又分为必然事
13、件与不可能事件,掌握“随机事件的概念”是解本题的关键.6、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝上的概率是:.故选A【点睛】本题考查了列举法求概率的知识此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比7、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,这名球员在罚球线上投篮一次,投中的概率为0
14、.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.8、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;故选:B【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件9、C【分析】根据随机掷一枚质地均匀的硬币三次
15、,可以分别假设出三次情况,画出树状图即可【详解】解:列树状图如下所示: 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,恰好有两次正面朝上的事件概率是:故选C【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图10、A【分析】根据概率公式计算即可【详解】解:袋中装有3个红球和5个绿球共8个球,从袋中随机摸出1个球是红球的概率为,故选:A【点睛】此题考查了概率的计算公式,正确掌握计算公式是解题的关键二、填空题1、0.8【分析】重复试验次数越多,其频率越能估计概率,求出射击1000次时的频率即可【详解】解:由题意可知射击1000次时,运动员射击一次时“
16、射中9环以上”的频率为用频率估计概率为0.801,保留小数点后一位可知概率值为0.8故答案为:0.8【点睛】本题考查了概率解题的关键在于明确频率估计概率时要在重复试验次数尽可能多的情况下2、【分析】袋中有五个小球,3个红球,2个白球,利用概率公式直接求解即可求得答案【详解】解:袋中有五个小球,3个红球,2个白球,形状材料均相同,从中任意摸一个球,摸出红球的概率为,故答案是:【点睛】本题考查概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)3、cab【分析】根据概率公式分别求出各事件的概率,故可求解【详解】依题意可得从该班同学的学
17、号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,a,b,c的大小关系是cab故答案为:cab【点睛】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比4、#【分析】根据题意在100张奖券中,奖项设置共有35个奖,根据概率公式求解即可【详解】解:根据题意在100张奖券中,奖项设置共有35个奖,若小李购货满100元,则她获奖的概率为故答案为:【点睛】本题考查了概率公式求概率,是解题的关键5、【分析】利用概率公式直接求解即可【详解】解:袋中有形状材料均相同的白球2个, 红球4个,共6个球, 任意摸一个球是红球的概率
18、故答案为:【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=三、解答题1、(1),(2)【分析】(1)直接利用概率公式求解即可;(2)画树状图展示所有6种等可能的结果数,找出小亮投放正确的结果数,然后根据概率公式求解;【详解】解:(1)圆圆把一袋厨余垃圾随机投放,共有三种等可能结果,恰好能放对只有一种,恰好能放对的概率是(2)将生活垃圾分为厨余、可回收和其他三类,分别记为a,b,c,相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A,B,C,画树状图为:共有6种等可能的结果数,其中方方把每袋垃圾
19、都放错的有2种:所以方方把每袋垃圾都放错的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率2、(1);(2)见解析,【分析】(1)利用简单概率公式计算即可;(2)利用画树状图或列表法,计算【详解】(1)事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,恰好抽到“冬季两项”的概率是,故答案为:; (2)解:直接使用图中的序号代表四枚邮票方法一:由题意画出树状图由树状图可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑
20、雪”(记为事件A)的结果有2种,即或方法二:由题意列表第二枚第一枚由表可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即或 【点睛】本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键3、(1)9000千克;(2)当售价定为16.5元/千克,日销售量为875千克,理由见解析;最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量
21、即可(2)根据表格求出销售量y与售价x的函数关系式,代入x=16.5计算即可;12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)销售量求出利润与售价的函数关系式即可;【详解】(1)由图可知损坏率在0.1上下波动,并趋于稳定故所求为千克(2)设销售量y与售价x的函数关系式为由题意可得函数图像过及两点得与的函数关系式为把代入,当售价定为16.5元/千克,日销售量为875千克依题意得:12天内售完9000千克柑橘故日销售量至少为:(千克)解得设利润为w元,则对称轴为当时w随x的增大而增大当时销售利润最大,最大利润为(元)【点睛】此题考查了利用频率估计概
22、率,以及二次函数销售利润问题解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)销售量求出利润与售价的函数关系式4、(1);(2)【分析】(1)利用列表法进行求解即可;(2)利用树状图的方法列出所有可能的情况,再求解即可【详解】解:(1)列表如下:男女1女2女3男(女1,男)(女2,男)(女3,男)女1(男,女1)(女2,女1)(女3,女1)女2(男,女2)(女1,女2)(女3,女2)女3(男,女3)(女1,女3)(女2,女3)由表格知,共有12种等可能性结果,其中满足“都是女生”(记为事件A)的结果只有6种,抽取2名,恰好都是女生的概率;(2)列树状图如
23、下:由树状图可知,共有24种等可能性结果,其中满足“恰好都是女生”(记为事件B)的结果只有6种,抽取3名,恰好都是女生的概率,故答案为:【点睛】本题考查列树状图或表格法求概率,掌握列树状图或表格的方法,做到不重不漏的列出所有情况是解题关键5、【分析】用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即