难点详解沪教版七年级数学第二学期第十四章三角形专项训练试题(名师精选).docx

上传人:可****阿 文档编号:32553238 上传时间:2022-08-09 格式:DOCX 页数:33 大小:585.27KB
返回 下载 相关 举报
难点详解沪教版七年级数学第二学期第十四章三角形专项训练试题(名师精选).docx_第1页
第1页 / 共33页
难点详解沪教版七年级数学第二学期第十四章三角形专项训练试题(名师精选).docx_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《难点详解沪教版七年级数学第二学期第十四章三角形专项训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《难点详解沪教版七年级数学第二学期第十四章三角形专项训练试题(名师精选).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )A1,2,3B3,4,7C2,3,4D4,5,1

2、02、如图,已知RtABC中,C90,A30,在直线BC上取一点P,使得PAB是等腰三角形,则符合条件的点P有( )A1个B2个C3个D4个3、如图,直线l1l2,被直线l3、l4所截,并且l3l4,146,则2等于()A56B34C44D464、若一个三角形的三个外角之比为3:4:5,则该三角形为()A直角三角形B等腰三角形C等边三角形D等腰直角三角形5、若等腰三角形的一个外角是70,则它的底角的度数是( )A110B70C35D556、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折痕EM,将AEF对折,点A落在直线EF上的点A

3、处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个7、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A两点确定一条直线B两点之间,线段最短C三角形具有稳定性D三角形的任意两边之和大于第三边8、一副三角板如图放置,点A在DF的延长线上,DBAC90,E30,C45,若BC/DA,则ABF的度数为()A15B20C25D309、下列所给的各组线段,能组成三角形的是:( )A2,11,13B5,12,7C5,5,11D5,12,1310、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D19第卷(非选择

4、题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值_2、如图,_3、如图,在RtABC中,C90,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若EPF45,连接EF,当AC6,BC8,AB10时,则CEF的周长为 _4、如图,ABC的面积等于35,AEED,BD3DC,则图中阴影部分的面积等于 _ 5、如图,在ABC中,点D为BC边的中点,点E为AC上一点,将C沿DE翻折,使点C落在AB上的点F处,若AEF=50,则A的度数为_三、解答题(10小题,每小题5分,共计50分)

5、1、如图,是等边三角形,分别交AB,AC于点D,E(1)求证:是等边三角形;(2)点F在线段DE上,点G在外,求证:2、如图,已知ABCDEB,点E在AB上,AC与BD交于点F,AB6,BC3,C55,D25(1)求AE的长度;(2)求AED的度数3、如图,点在上,点在上,=求证:4、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,(1)求证:;(2)若,求BE的长5、探究与发现:如图,在ABC中,BC45,点D在BC边上,点E在AC边上,且ADEAED,连接DE(1)当BAD60时,求CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想BAD与CDE的数

6、量关系,并说明理由(3)深入探究:如图,若BC,但C45,其他条件不变,试探究BAD与CDE的数量关系6、已知:在ABC中,AD平分BAC,AE=AC求证:ADCE7、如图,AD为ABC的角平分线(1)如图1,若BEAD于点E,交AC于点F,AB4,AC7则CF ;(2)如图2,CGAD于点G,连接BG,若ABG的面积是6,求ABC的面积;(3)如图3,若B2C,ABm,ACn,则CD的长为 (用含m,n的式子表示)8、已知:(1)O是BAC内部的一点如图1,求证:BOCA;如图2,若OAOBOC,试探究BOC与BAC的数量关系,给出证明(2)如图3,当点O在BAC的外部,且OAOBOC,继续

7、探究BOC与BAC的数量关系,给出证明9、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:已知:AOB求作:AOB,使AOBAOB作图:(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D;(4)过点D画射线OB,则AOBAOB请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案写在相应的横线上)证明:由作图可知,在OCD和OCD中,OCD ,AOBAOB(2)这种作一个角等于已知角的方法依据是 (填序号)A

8、AS;ASA;SSS;SAS10、如图,将一副直角三角板的直角顶点C叠放在一起(1)如图(1),若DCE33,则BCD ,ACB (2)如图(1),猜想ACB与DCE的大小有何特殊关系?并说明理由(3)如图(2),若是两个同样的直角三角板60锐角的顶点A重合在一起,则DAB与CAE的数量关系为 -参考答案-一、单选题1、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解【详解】解:A、1+23,不能组成三角形,不符合题意;B、3+47,不能组成三角形,不符合题意;C、2+34,能组成三角形,符合题意;D、4+510,不能组成三角形,不符合题意;故选:C【点睛】本题考查

9、了三角形的三边关系,满足两条较小边的和大于最大边即可2、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论【详解】解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:C90,A30,是等边三角形,点重合,符合条件的点P有2个;故选B【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键3、C【分析】依据l1l2,即可得到3146,再根据l3l4,可得2904644【详解】解:如图:l1l2,146,3146,又l3l4,2904644,故选:C【点睛】本题考查了平行线性质以及三角形内角和,

10、平行线的性质:两直线平行,同位角相等以及三角形内角和是1804、A【分析】根据三角形外角和为360计算,求出内角的度数,判断即可【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x360,解得,x30,三角形的三个外角的度数分别为90、120、150,对应的三个内角的度数分别为90、60、30,此三角形为直角三角形,故选:A【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360是解题的关键5、C【分析】先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得【详解】解:等腰三角形的一个外角是,与这个外角相邻的内角的度数为,这个等腰三角形的顶角的度数为,

11、底角的度数为,故选:C【点睛】本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键6、C【分析】先由翻折的性质得到AEN=AEN,BEM=BEM,从而可知NEM=180=90,然后根据余角的定义找出BME的余角即可【详解】解:由翻折的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=180=90由翻折的性质可知:MBE=B=90由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BE

12、M、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键7、C【分析】根据三角形具有稳定性进行求解即可【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键8、A【分析】先求出EFD=60,ABC=45,由BCAD,得到EFD=FBC=60,则ABF=FBC-ABC=15【详解】解:DBAC90,E30,C45,EFD=60,ABC=45,BCAD,EFD=FBC=60,ABF=FBC-ABC=15,故选A【点睛】本题主要考查了

13、直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键9、D【分析】根据三角形三边关系定理,判断选择即可【详解】2+11=13,A不符合题意;5+7=12,B不符合题意;5+5=1011,C不符合题意;5+12=1713,D符合题意;故选D【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键10、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查

14、了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键二、填空题1、【分析】连接,交于点,连接,则的最小值为,再由已知求出的长即可【详解】解:连接,交于点,连接,是等边三角形,是边中点,点与点关于对称,的最小值为,是的中点,的面积为,的最小值为,故答案为:【点睛】本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键2、180度【分析】如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.【详解】解:如图,连接 记的交点为 故答案为:【点睛】本题考查

15、的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.3、4【分析】根据题意过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用全等三角形的性质证明EF=EM+EN,即可得出结论【详解】解:如图,过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJFN,连接PJBP平分BC,PA平分CAB,PMBC,PNAC,PKAB,PMPK,PKPN,PMPN,CPMCPNC90,四边形PMCN是矩形,四边形PMCN是正方形,CMPM,MPN90,在PMJ和PNF中,PMJPNF(SAS),MPJFPN,PJPF,JPF

16、MPN90,EPF45,EPFEPJ45,在PEF和PEJ中,PEFPEJ(SAS),EFEJ,EFEM+FN,CEF的周长CE+EF+CFCE+EM+CF+FN2EM2PM,SABCBCAC(AC+BC+AB)PM,PM2,ECF的周长为4,故答案为:4【点睛】本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问4、15【分析】连接DF,根据AEED,BD3DC,可得 , ,然后设AEF的面积为x,BDE的面积为y,则,再由ABC的面积等于35,即可求解【详解】解:如图,连接DF, AEED, ,BD3DC, ,设AEF

17、的面积为x,BDE的面积为y,则,ABC的面积等于35, ,解得: 故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到 , ,是解题的关键5、65度【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,EFD=C,得到DF=BD,根据等腰三角形的性质得到BFD=B,由三角形的内角和和平角的定义得到A=AFE,于是得到结论【详解】解:点D为BC边的中点,BD=CD,将C沿DE翻折,使点C落在AB上的点F处,DF=CD,EFD=C,DF=BD,BFD=B,A=180-C-B,AFE=180-EFD-DFB,A=AFE,AEF=50,A=(180-50

18、)=65故答案为:65【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键三、解答题1、(1)见详解;(2)见详解【分析】(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;(2)连接AG,由题意易得AB=AC,然后可知ABFACG,则有AF=AG,进而可得FAG=60,最后问题可求证【详解】证明:(1)是等边三角形,DEBC,是等边三角形;(2)连接AG,如图所示:是等边三角形,AB=AC,ABFACG(SAS),是等边三角形,【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题

19、的关键2、(1);(2)【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得;(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得【详解】解:(1),;(2),【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键3、见解析【分析】根据已知条件和公共角,直接根据角边角证明,进而即可证明【详解】在与中, 【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键4、(1)见解析(2)【分析】(1)利用是的外角,以及证明即可(2)证明,可知,从而得出答案(1)证明:是的外角,又,(2)解:在和中,【点睛】本题考查了三角

20、形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键5、(1)30;(2)BAD2CDE,理由见解析;(3)BAD2CDE【分析】(1)根据三角形的外角的性质求出ADC,结合图形计算即可;(2)设BADx,根据三角形的外角的性质求出ADC,结合图形计算即可;(3)设BADx,仿照(2)的解法计算【详解】解:(1)ADC是ABD的外角,ADCBAD+B105,DAEBACBAD30,ADEAED75,CDE1057530;(2)BAD2CDE,理由如下:设BADx,ADCBAD+B45+x,DAEBACBAD90x,ADEAED,CDE45+xx,BAD2CDE;(3)设B

21、ADx,ADCBAD+BB+x,DAEBACBAD1802Cx,ADEAEDC+x,CDEB+x(C+x)x,BAD2CDE【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系6、见解析【分析】先根据角平分线的定义得到BAD=BAC,再根据等腰三角形的性质和三角形外角定理得到E=BAC,从而得到BAD=E,即可证明ADCE【详解】解:AD平分BAC,BAD=BAC,AE=AC,E=ACE,E+ACE=BAC,E=BAC,BAD=E,ADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关

22、定理并灵活应用是解题关键7、(1)3(2)12(3)【分析】(1)利用ASA证明AEFABE,得AE=AB=4,得出答案;(2)延长CG、AB交于点H,设SBGC=SHGB=a,用两种方法表示ACH的面积即可;(3)在AC上取AN=AB,可得CD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可求出CD的长(1)AD是ABC的平分线,BAD=CAD,BEAD,BEA=FEA,在AEF和AEB中, ,AEFAEB(ASA),AF=AB=4,AC=7 CF=AC-AF=7-4=3,故答案为:3;(2)延长CG、AB交于点H,如图,由(1)知AC=AH,点G为CH的中点,设SBGC=SH

23、GB=a,根据ACH的面积可得:SABC+2a=2(6+a),SABC=12;(3)在AC上取AN=AB,如图,AD是ABC的平分线,NAD=BAD,在ADN与ADB中,ADNADB(SAS),AND=B,DN=BD,B=2C,AND=2C,C=CDN,CN=DN=AC-AB=n-m,BD=DN=n-m,根据ABD和ACD的高相等,面积比等于底之比可得:,故答案为:【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键8、(1)见解析;BOC2A,见解析;(2)BOC2BAC,见解析【分析】(1)连接AO并延长AO至点E,根

24、据三角形外角性质解答即可;延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可【详解】证明:(1)如图所示:连接AO并延长AO至点E,则BOEBAO,COECAO,BOCA;BOC与BAC的数量关系:BOC2A;证明:如图所示,延长AO至点E,则BOEBAO+B,COECAO+C,OAOBOC,BAOB,CAOC,BOCCOE+COEBAO+B+CAO+C2(BAO+CAO)2BAC;(2)BOC与BAC的数量关系:BOC2BAC;证明:如图所示,设Bx, OAOBOC,BBAOx,COACBAC+x;在BEO和AEC中,有:B+BOCC+CAE;即x

25、+BOCCAE+x+CAE2BAC+x;即BOC2BAC【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答9、(1)CD,OD,OCD,(2)【分析】(1)根据SSS证明DOCDOC,可得结论;(2)根据SSS证明三角形全等(1)证明:由作图可知,在DOC和DOC中,OCDOCD(SSS),AOBAOB故答案为:CD,OD,OCD,(2)解:上述证明过程中利用三角形全等的方法依据是SSS,故答案为:【点睛】本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题10、(1)57,147;(2)ACB180DCE,理由见解析

26、;(3)DAB+CAE120【分析】(1)根据角的和差定义计算即可(2)利用角的和差定义计算即可(3)利用特殊三角板的性质,角的和差定义即可解决问题【详解】解:(1)由题意,;故答案为:57,147 (2)ACB180DCE, 理由如下: ACE90DCE,BCD90DCE, ACBACEDCEBCD90DCEDCE90DCE180DCE (3)结论:DAB+CAE=120理由如下:DAB+CAE=DAE+CAE+BAC+CAE=DAC+EAB,又DAC=EAB=60,DAB+CAE=60+60=120故答案为:DAB+CAE=120【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁