《2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数课时练习试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数课时练习试题(名师精选).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平方根和立方根都等于它本身的数是( )A1B1C0D12、的值等于( )AB2CD23、下列运算正确的是
2、()ABCD4、在实数,1.12112111211112(每两 个2之间依次多一个1)中,无理数有( )个A2B3C4D55、,3,的大小顺序是()ABCD6、关于的叙述,错误的是()A是无理数B面积为8的正方形边长是C的立方根是2D在数轴上可以找到表示的点7、在下列四个选项中,数值最接近的是( )A2B3C4D58、实数2,0,3,中,最小的数是()A3BC2D09、在实数|3.14|,3,中,最小的数是()AB3C|3.14|D10、下列说法正确的是()A一个数的立方根有两个,它们互为相反数B负数没有立方根C任何数的立方根都只有一个D如果一个数有立方根,那么这个数也一定有平方根第卷(非选择
3、题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算_;2、对于实数a,b,定义运算“*”如下:a*b(a+b)2(ab)2若(m+2)*(m3)24,则m的值为_3、10-3的立方根是_4、的平方根是_,_5、已知x,y是实数,且(y3)20,则xy的立方根是_三、解答题(10小题,每小题5分,共计50分)1、先化简:,再从中选取一个合适的整数代入求值2、解方程:(1)x281;(2)(x1)3273、(1)计算:;(2)计算:(2x2)2+x3xx5x;(3)先化简再求值:2(a+2)24(a+3)(a3)+3(a1)2,其中a14、解方程:(1)4(x1)236;(2)8x3
4、275、已知a、b互为倒数,c、d互为相反数,求(cd)21的值6、(1)计算(2)计算(3)解方程(4)解方程组7、计算:(1)(2)8、计算题(1);(2)(1)20219、(1)计算:;(2)求下列各式中的x:;(x+3)32710、已知的立方根是2,算术平方根是4,求的算术平方根-参考答案-一、单选题1、C【分析】根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0【详解】解:平方根是本身的数有0,立方根是本身的数有1,-1,0;平方根和立方根都是本身的数是0故选C【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b0),满足,那么a就叫做
5、b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根2、D【分析】由于表示4的算术平方根,由此即可得到结果【详解】解:4的算术平方根为2,的值为2故选D【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误弄清概念是解决本题的关键3、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可【详解】A、,故A错误;B、,故B正确;C,故C错误;D|-2|-2,故D错误故选:B【点睛】本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键4、C【分析】利用无理数的定义:无限不循环小数称为
6、无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数【详解】有理数有:,一共四个无理数有:,1.12112111211112(每两 个2之间依次多一个1),一共四个故选:C【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112,等有规律的数5、B【分析】根据实数的大小比较法则即可得【详解】解:,则,故选:B【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键6、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解【详解】解:A、是无理数,该说法正确,故本选
7、项不符合题意;B、,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键7、A【分析】根据无理数的估算先判断,进而根据,进而可以判断,即可求得答案【详解】解:,即更接近2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键8、A【分析】根据实数的性质即可判断大小【详解】解:3
8、02故选A【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质9、D【分析】把数字从大到小排序,然后再找最小数【详解】解:|3.14|3.14|3|3,|-|,|3|3.14|,故选:D【点睛】本题考查实数大小比较,掌握比较方法是本题关键10、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义【详解】解:一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,A选项说法不正确;一个负数有一个负的立方根,B选项说法不正确;一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,C选项说法正确;一个负数有一个负的立方根,但负
9、数没有平方根,D选项说法不正确综上,说法正确的是C选项,故选:C【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.二、填空题1、-3【分析】根据立方根、算术平方根可直接进行求解【详解】解:原式=;故答案为-3【点睛】本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键2、或4【分析】先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得【详解】解:由题意得:,即,或,解得或,故答案为:或4【点睛】本题考查了利用平方根解方程,掌握理解新运算的定义是解
10、题关键3、0.1【分析】先化简1030.001,根据立方根的定义即可解答【详解】解:1030.001,0.001的立方根为0.1,故答案为:0.1【点睛】本题考查了立方根,解题的关键是掌握会求一个数的立方根4、2 -8 【分析】根据平方根的定义:如果对于一个数a和非负数b,有,那么a就叫做b的平方根;立方根的定义:对于c、d两个数,如果,那么c就叫做d的立方根,进行求解即可【详解】解:,4的平方根为2,的平方根为2,故答案为:2;-8【点睛】本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键5、【分析】根据二次根式和平方的非负性,可得 ,即可求解【详解】解:根据题意得: ,解得
11、: , 故答案为:【点睛】本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键三、解答题1、或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出a、b、y的值是解答的关键72x-2,2【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题【详解】解:原式=,x取整数,x可取2,当x=2时,原式=22-2=2【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法2、(1)x9;(2)x4【分析】(1)方
12、程利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解【详解】解:(1)开方得:x9;(2)开立方得:x13,解得:x4【点睛】本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)3、(1)8;(2)4x4;(3)a2+2a+47,46【分析】(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;(2)先算乘方,再算乘除,然后合并同类项求解即可;(3)先根据整式的乘法运算法则化
13、简,然后合并同类项,最后代入求解即可【详解】解:(1)原式92(1)7+18;(2)原式4x4+x4x44x4;(3)原式2(a2+4a+4)4(a29)+3(a22a+1)2a2+8a+84a2+36+3a26a+3a2+2a+47,当a1时,原式(1)2+2(1)+4712+4746【点睛】此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则4、(1)x4或2;(2)x【分析】(1)先变形为(x1)29,然后求9的平方根即可;(2)先变形为x3,再利用立方根的定义得到答案【详解】解:(1
14、)方程两边除以4得,(x1)29,x13,x4或2;(2)方程两边除以8得,x3,所以x【点睛】本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键5、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可【详解】解:根据题意得:ab1,cd0,则(cd)21的值1010【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键6、(1);(2);(3)或;(4)【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即
15、可得【详解】解:(1)原式;(2)原式;(3),或;(4),由得:,解得,将代入得:,解得,故方程组的解为【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键7、(1);(2)【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可【详解】解:(1)=;(2) =【点睛】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键8、(1)22;(2)4【分析】(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;(2)原
16、式利用乘方的意义,算术平方根定义计算即可得到结果【详解】解:(1)原式22|4|22422;(2)原式154【点睛】本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键9、(1);(2);【分析】(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;(2)对等式进行开平方运算,再把x的系数转化为1即可;对等式进行开立方运算,再移项即可【详解】解:(1)2(2)33;(2)3x6;(x+3)327x+33x6【点睛】本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用10、【分析】根据立方根、算术平方根解决此题【详解】解:由题意得:2a+4=8,3a+b-1=16a=2,b=114a+b=8+11=194a+b的算术平方根为【点睛】本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键