《最新北师大版八年级数学下册第三章图形的平移与旋转综合训练试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《最新北师大版八年级数学下册第三章图形的平移与旋转综合训练试题(含答案及详细解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将绕点按顺时针旋转一定角度得到,点的对应点点恰好落在边上,若,则的长为( )A3B2CD12、下列图形中,
2、既是中心对称图形,又是轴对称图形的个数是( )A1B2C3D43、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是( )A50B60C40D304、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()ABCD15、下列图形中,是中心对称图形的是( )ABCD6、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD7、下列图形中不是中心对称图形的是( )ABCD8、如图下面图形既是轴对称图形,又是中心对称图形的是()ABCD9、下列图形中,既是轴
3、对称图形又是中心对称图形的是()ABCD10、如图,把含30的直角三角板ABC绕点B顺时针旋转至如图EBD,使BC在BE上,延长AC交DE于F,若AF8,则AB的长为()A4B4C4D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为_2、若点与点关于原点对称,则的值为_3、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_4、如图,在RtABC中,C90,ABC30,AC3,将RtABC绕点A逆时
4、针旋转得到RtABC,使点C落在AB边上,连接BB,则BB的长度为 _5、在平面直角坐标系中,点关于原点的对称点坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合(1)如图1,若,试说明;(2)如图2,若,OB平分将三角尺以每秒5的速度绕点O顺时针旋转,设运动时间为t秒,当t为何值时,直线OE平分;当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值2、如图,在正方形网格中,每个小正方形的边长为1,A、B、C三点都在格点上(网格线的交点叫做格点),现将ABC先向上平移4个单位长度,再向
5、右平移3个单位长度就得到A1B1C1(1)在图中画出A1B1C1,点C1的坐标是 ;(2)如果将A1B1C1看成由ABC经过一次平移得到的,那么一次平移的距离是 3、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上记点D1的坐标是(m,n),C1的坐标是(p,q)(1)设DAD130,n2,求证:OD1的长度;(2)若DAD190,m,n满足m+n4,p2+q225,求p+q的值4、如图,在平面直角坐标系中,ABC的顶点坐标为A(1,1),B(3,2),C(2,
6、4)(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;(2)在图中作出A1B1C1关于y轴对称的A2B2C2;(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 5、如图1,ABC,AED是等腰直角三角形,EAD=90,点B在线段AE上,点C在线段AD上(1)请直接写出线段BE与线段CD的数量关系为_;(2)如图2,将图1中的ABC绕点A顺时针旋转角(090),则(1)中的结论是否仍成立?若成立,请利用图2证明;若不成立,请说明理由-参考答案-一、单选题1、B【分析】由直角三角形的性质可得AB2,BC2AB4
7、,由旋转的性质可得ADAB,可证ADB是等边三角形,可得BDAB2,即可求解【详解】解:,BAC90C=90-BC2ABBC2=AC2+AB2AB2,BC2AB4,RtABC绕点A按顺时针旋转一定角度得到RtADE,ADAB,且B60ADB是等边三角形BDAB2,CDBCBD422故选:B【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键2、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称
8、图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合3、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.4、C【分析】先判断出矩形、
9、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;则P(中心对称图形);故选:C【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键5、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定
10、即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合6、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把
11、一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键7、B【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形8、B【详解】解:A、是轴对称图形,但不是中心对称图
12、形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键9、D【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,不
13、是中心对称图形,故本选项符合题意;D既是轴对称图形,又是中心对称图形,故本选项不符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合10、C【分析】根据旋转的性质得到ABBE,AE30,设BCx,根据直角三角形的性质得到ABDE2x,根据勾股定理得到AC,根据题意列方程即可得到结论【详解】解:把含3
14、0的直角三角板ABC绕点B顺时针旋转得到EBD,ABBE,AE30,ACB90,EDF90,设BCx,ABBE2x,CEx,AC,ECF90,E30,CFEF,CEx,CF,AF8,xAB2x,故选:C【点睛】本题考查了旋转的性质,含30角的直角三角形的性质,勾股定理,熟练掌握旋转的性质是解题的关键二、填空题1、【分析】连接AD、BD,由勾股定理可得BD,求出OFA=30,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,在中,将正六边形ABCDEF绕坐标原点O顺时针旋转
15、,每次旋转60,6次一个循环,经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律2、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答【详解】解:由点与点关于原点对称,可得n1,故答案为:4【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数3、【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心对称,m=4,n=-5,m+n=-5+4=-1
16、,故答案为:-1【点睛】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键4、6【分析】利用含30角的直角三角形的性质可得AB6,BAC60,根据旋转可证ABB是等边三角形,从而BBAB6【详解】解:在RtABC中,C90,ABC30,BAC60,AB2AC6,将RtABC绕点A逆时针旋转得到RtABC,BABCAC60,ABAB,ABB是等边三角形,BBAB6故答案为:6【点睛】本题主要考查了图形的旋转,等边三角形判定和性质,直角三角形的性质,熟练掌握相关知识点是解题的关键5、(-4,7)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P
17、(x,y)关于原点O的对称点是P(-x,-y),进而得出答案【详解】解:点关于原点的对称点坐标为(-4,7),故答案是:(-4,7)【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键三、解答题1、(1)见解析;(2)或;【分析】(1)根据垂直的性质即可求解;(2)分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解【详解】解:(1),(2)OB平分,情况1:当OE平分时,则旋转之后,OB旋转的角度为,情况2:当OF平分时,同理可得,OB旋转的角度为,综上所述,或,OP在内部,如图所示,由题意知,
18、OM平分,【点睛】此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系2、(1)A1B1C1为所求,图形见详解;(5,3);(2)5【分析】(1)先求出点A(-3,2),点B(-2,-2),点C(2,-1),根据点平移的特征上加下减,右加左减原则可得A1(0,6),点B1(1,2),点C1(5,3),利用描点A1(0,6),点B1(1,2),点C1(5,3),连接A1B1、B1C1、C1 A1,则A1B1C1为所求;(2)根据勾股定理求出AA1的长即可【详解】解:(1)根据图形位置点A(-3,2),点B(-2,-2),点C(2,-1),ABC先向上平移
19、4个单位长度,再向右平移3个单位长度就得到A1B1C1,根据点平移的特征上加下减,右加左减原则可得:A1(-3+3,2+4)即(0,6),点B1(-2+3,-2+4)即(1,2),点C1(2+3,-1+4)即(5,3),在平面直角坐标系中描点A1(0,6),点B1(1,2),点C1(5,3),顺次连结A1B1、B1C1、C1 A1,则A1B1C1为所求;故答案为:(5,3);(2)根据勾股定理AA1=,将A1B1C1看成由ABC经过一次平移得到的,那么一次平移的距离是5,故答案为5【点睛】本题考查平移作图,勾股定理,掌握平移作图方法是先求点坐标,在根据平移的方向与距离平移到指定位置,连线成图,
20、和勾股定理应用是解题关键3、(1)4;(2)-1或-7【分析】(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,可求的长;(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,点G坐标为,得,由知的值,从而得到的值【详解】解:(1)DAD130且D1、C1、O三点在一条直线上如图所示,连接,过点向作垂线交点为(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为,在和中点横坐标可表示为p+q=-7或-1【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识解题的关键与难点是找出线段之间的关系4、(1)见解析;(2)见解析;(3)(a
21、4,b5)【分析】(1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可【详解】解:(1)如图,A1B1C1即为所求;(2)如图,A2B2C2即为所求;(3)由题意得:P(a4,b5)故答案为:(a4,b5);【点睛】本题考查作图轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型5、(1)BE=CD,理由见解析;(2)成立,理由见解析【分析】(1)根据等腰直角三角形的性质可得AB=AC,AE=AD
22、,再根据等量关系可得线段BE与线段CD的关系;(2)根据等腰直角三角形的性质得到AB=AC,AE=AD,由旋转的性质可得BAE=CAD,根据全等三角形的性质即可得到结论【详解】解:(1)BE=CD,理由:ABC和AED都是等腰直角三角形,BAC=EAD=90,AB=AC,AE=AD,AE-AB=AD-AC,BE=CD,故答案为:BE=CD;(2)成立,理由:ABC和AED都是等腰直角三角形,BAC=EAD=90,AB=AC,AE=AD,由旋转的性质可得BAE=CAD,在BAE与CAD中,BAECAD(SAS),BE=CD【点睛】本题考查了等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,熟练掌握旋转的性质是解题的关键