《难点解析京改版八年级数学下册第十五章四边形专项攻克试题.docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十五章四边形专项攻克试题.docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是( )ABCD2、如图,四边形ABCD中,A=60,AD=2,AB=3,点M,N分别
2、为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD3、下列图形中,是中心对称图形的是()ABCD4、下列几何图形既是轴对称图形又是中心对称图形的是( )ABCD5、在平面直角坐标系中,点关于原点对称的点的坐标是( )ABCD6、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD7、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A4:1B5:1C6:1D7:18、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则APN的度数是( )A120B118C110D1
3、089、在方格纸中,选择标有序号中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD10、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A可回收物B有害垃圾C厨余垃圾D其他垃圾第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_2、若正边形的每个内角都等于12
4、0,则这个正边形的边数为_3、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB8,AD16,BE4,则MC的长为_4、如图,平面直角坐标系中,有,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为_5、过五边形一个顶点的对角线共有_条三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB3,ABC60,求EF的长2、如图1,在平面直角坐标系中,直线l1:
5、ykx+b(k0)与x轴交于点A,与y轴交于点B(0,6),直线l2与x轴交于点C,与直线l1交于D(m,3),OC2OA,tanBAO(1)求直线l2的解析式(2)在线段DC上是否存在点P,使DAP的面积为?若存在,求出点P的坐标,若不存在,请说明理由(3)如图2,连接OD,将ODB沿直线AB翻折得到ODB若点M为直线AB上一动点,在平面内是否存在点N,使得以B、O、M、N为顶点的四边形为菱形,若存在,直接写出N的坐标,若不存在,请说明理由3、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段4、如图是两张
6、1010的方格纸,方格纸中的每个小正方形的边长均为1请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形5、如图,四边形ABCD是菱形,DEAB、DFBC,垂足分别为E、F求证:BEBF-参考答案-一、单选题1、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一
7、点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60 A
8、H=2=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键3、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本
9、题的关键.4、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;故选D【点睛】本题考查了中心对称图形与轴对称图形的概念解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【
10、详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.6、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图
11、形,故本选项符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合7、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补8、D【分析】由五边形的性质得出AB=BC,ABM=C,证明ABMBCN,得出BAM=CBN,由BAM+ABP=APN
12、,即可得出APN=ABC,即可得出结果【详解】解:五边形ABCDE为正五边形,AB=BC,ABM=C,在ABM和BCN中,ABMBCN(SAS),BAM=CBN,BAM+ABP=APN,CBN+ABP=APN=ABC= APN的度数为108;故选:D【点睛】本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键9、B【分析】利用中心对称图形的定义判断即可【详解】解:根据中心对称图形的定义可知,满足条件故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180后与本身重合的图形叫做中心对称图形是解题的关键1
13、0、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、【分析】根据正方形的对角线平分一组对角线可得OCD=ODB=45,正方形的对角线互
14、相垂直平分且相等可得COD=90,OC=OD,然后根据同角的余角相等求出COA=DOB,再利用“ASA”证明COA和DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到AOB是等腰直角三角形,再根据垂线段最短可得OACD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答【详解】解:如图,四边形CDEF是正方形,在与中,OA=OB,AOB=90,AOB是等腰直角三角形,由勾股定理得: ,要使AB最小,只要OA取最小值即可,根据垂线段最短,OACD时,OA最小,正方形CDEF,FCCD,OD=OF,CA=DA,OA=,AB=【点睛】本题考查了正方形的性质,全等三角形的
15、判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出AOB是等腰直角三角形是解题的关键2、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解【详解】解:设所求正边形边数为,则,解得,故答案是:6【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理3、10【分析】过E作EFAD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出ANMENM,可得AM=EM,根据矩形ABCD,得出B=A=D=90,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设
16、AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可【详解】解:过E作EFAD于F,矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,ANMENM,AM=EM,矩形ABCD,B=A=D=90, FEAD,AFE=B=A=90,四边形ABEF为矩形,AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在RtFEM中,根据勾股定理,即,解得m=10,MD=AD-AM=16-10=6,在RtMDC中,MC=故答案为10【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键4、(9,4)、(-3,4)、(3,-4)
17、【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标【详解】平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBO,D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4)故答案为:(9,4)、(-3,4)、(3,-4)【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等5、2【分析】画出图形,直接观察即可解答【详解】解:如图所示,过五边形一个顶点的对角线共有2条;故答案为:2【
18、点睛】本题考查了多边形对角线的条数,解题关键是明确过n边形的顶点可引出(n-3)条对角线三、解答题1、(1)矩形,见解析;(2)3【分析】(1)利用AAS判定ABEFCE,从而得到ABCF;由已知可得四边形ABFC是平行四边形,BCAF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;(2)先证ABE是等边三角形,可得ABAEEF3【详解】解:(1)四边形ABFC是矩形,理由如下:四边形ABCD是平行四边形,BAECFE,ABEFCE,E为BC的中点,EBEC,在ABE和FCE中,ABEFCE(AAS),ABCF,四边形ABFC是平行四边形,ADBC,ADAF,BCAF,四边形A
19、BFC是矩形(2)四边形ABFC是矩形,BCAF,AEEF,BECE,AEBE,ABC60,ABE是等边三角形,ABAE3,EF3【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键2、(1);(2)(,2);(3)N点坐标为(,)、(,)、(0,0)或(,6)【分析】(1)由y轴截距以及正切值,可求出,则 A点坐标为(,0),因为OC2OA所以C点坐标为(,0 ),将D(m,3)代入,得D点坐标为( ,3),再将D(,3),C(,0 )代入,求得(2)设P点坐标为(a,),由题意可知DAP为,DAP的高为A点到直线
20、CD的距离,过 A点做DC平行线交y轴于点E,由可知 ,将A(,0)代入,解得 ,故两线间的距离为,DAP的高为,由三角形面积= 底高,有2,故有,进而即可求解;(3)如图所示,共有4个点满足条件,证明见解析【详解】(1)B(0,6),tanBAO令y=0,得A点坐标为(,0)OC2OAC点坐标为(,0)将D(m,3)代入D点坐标为(,3)将D(,3),C(,0)代入有得(2)设P点坐标为(a,),过A点做DC平行线交y轴于点EAE/DC将A(,0)代入得b=2故和间的距离为,即DAP的高为由三角形面积=底高有有2故有化简得解得a=0(舍去)或a=,故P点坐标为(,2)(3)如图所示,可知BO
21、=6,在B点上方截取BM1=6,过M1做BO平行线,过O做BM1平行线,两平行线相交于N1由作图步骤可知BON1M1为菱形,由菱形性质可得N1坐标为(,)如图所示,可知BO=6,在B点下方截取BM2=6,过M2做BO平行线,过O做BM2平行线,两平行线相交于N2由作图步骤可知BON2M2为菱形,由菱形性质可得N2坐标为(,)如图所示,可知BO=6,在B点下方截取BN3=6,过N3做BO平行线,过O做BN3平行线,两平行线相交于M3由作图步骤可知B N3M3O为菱形,由菱形性质可得N3坐标为(0,0)如图所示,可知BO=6,令BO做菱形其中一条对角线,过O做x轴平行线交直线AB于点M4,过B点做
22、OM4平行线,过O点做直线AB平行线,两平行线相交于N4由作图步骤可知B M4ON4为菱形,由菱形性质可得N4坐标为(,6)综上所述N点坐标为(,)、(,)、(0,0)或(,6)【点睛】本题考查了一次函数的图象及其性质,菱形的判定,熟练掌握并应用菱形的性质是解第三问的关键:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形具有平行四边形的一切性质.菱形是轴对称图形,对称轴是两条对角线所在的直线.利用菱形的性质可证线段相等,角相等3、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解【分析】(1)根据四边形ABCD是平行四边形,得出ABCD即(ABED),
23、AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EFBF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证DCF为等边三角形即可【详解】证明:(1)四边形ABCD是平行四边形,ABCD即(ABED),AB=CD,四边形ABDE为平行四边形,AB=DE,CD=ED,点D为CE中点;(2)结论为:AB=DC=DE=DF=CF,EFBF,CD=ED,DF=CD=ED,ABCD,ABC=60,DCF=ABC=60,DCF为等边三角形,CF=CD=DF=AB=ED【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质
24、,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键4、(1)画图见解析;(2)画图见解析【分析】(1)利用平行四边形的性质结合其面积求法得出答案,答案不唯一;(2)利用矩形的性质结合其周长得出答案,答案不唯一【详解】解:(1)如图1所示:(2)如图2所示:答案不唯一【点睛】本题主要考查了画轴对称图形和中心对称图形,解决本题的关键是要熟练正确把握中心对称图形和轴对称图形的性质5、见解析【分析】根据菱形的性质,可得ADDC,ABBC,AC从而得到AEDCFD从而得到AECF即可求证【详解】证明:四边形ABCD是菱形, ADDC,ABBC,ACDEAB,DFBC,AEDCFD90AEDCFD(AAS)AECFABAEBCCF即:BEBF【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键