《人教版八年级数学下册第十九章-一次函数同步测评试题.docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十九章-一次函数同步测评试题.docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十九章-一次函数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、直线yax+a与直线yax在同一坐标系中的大致图象可能是()ABCD2、已知为第四象限内的点,则一次函数的图象
2、大致是( )A BC D3、变量,有如下关系:;其中是的函数的是( )ABCD4、如图所示,若一次函数yk1xb1的图象l1与yk2xb2的图象l2相交于点P,则方程组的解是()ABCD5、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )ABCD6、小赵想应聘超市的牛奶销售员,现有甲、乙两家超市待选,每月工资按底薪加上提成合算,甲、乙两超市牛奶销售员每月工资y(元)与员工销售量x(件)之间的关系如图所示,则下列说法错误的是( )A销量小于500件时,选择乙超市工资更高B想要获得3000元的工资,甲超市需要的销售量更少C在甲超市每销
3、售一件牛奶可得提成3元D销售量为1500件时,甲超市比乙超市工资高出800元7、下列函数中,为一次函数的是( )ABCD8、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()Ay=2x+3By=x3Cy=x+3Dy=3x9、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系则下列说法错误的是()A乙摩托车的速度较快B经过0.3小时甲摩托车行驶到A,B两地的中点C当乙摩托车到达A地时,甲摩托车距离A地kmD经过0.25小时两摩托车相遇10、已知
4、点A(2,y1)和B(1,y2)都在直线y3x1上,则y1,y2的大小关系是()Ay1y2By1y2Cy1y2D大小不确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直角梯形ABCD中,动点P从点B出发,沿BC、CD运动至点D停止,设点P运动的路程为x,ABP的面积为y若y关于x的函数图象如图所示,则BCD的面积是_2、函数的定义域是 _3、如图,一次函数y=kx+b与y=mx+n的图象交于点P(2,1),则由函数图象得不等式kx+bmx+n的解集为_4、直线yx2与y轴交点坐标是_5、已知函数f(x)+x,则f()_三、解答题(5小题,每小题10分,共计5
5、0分)1、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是 ;b表示的数是 ;(3)无人机在空中停留的时间共有 分钟2、张明和爸爸一起出去跑步,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张明继续前行,5分钟后也原路返回,两人恰好同时到家张明和爸爸在整个过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示(1)n的值为_
6、;(2)张明开始返回时与爸爸相距_米;(3)第_分钟吋,两人相距900米3、如图在平面直角坐标系中,一次函数ykx+b的图象经过点A(2,6),且与x轴相交于点B,与正比例函数y3x的图象相交于点C,点C的横坐标为1(1)求k,b的值;(2)若点D在y轴负半轴上,且满足SCOD=3SBOC,求点D的坐标4、已知y1与x3成正比例且x1时,y5(1)求y与x之间的函数关系式;(2)若点(m,3)在这个函数的图象上,求m的值5、甲、乙两家采摘园的草莓品质相同,销售价格都是每千克50元,两家均推出了“周末”优惠方案,甲采摘园的优惠方案是:游客进园需购买100元的门票,采摘的草莓六折优惠;乙采摘园的优
7、惠方案是:游客进园不需要购买门票,采摘的草莓超过6千克后,超过部分五折优惠优惠期间,设某游客的草莓采摘量为x(x6)千克,在甲采摘园所需总费用为y1元,在乙采摘园所需总费用为y2元(1)求y1、y2关于x的函数解析式;(2)如果你是游客你会如何选择采摘园?-参考答案-一、单选题1、D【解析】【分析】若y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断【详解】解:A、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象
8、限,所以A选项不符合题意;B、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k0)的图象为一条直线,当k0,图象过第一、三象限;当k0,图象过第二、四象限;直线与y轴的交点坐标为(0,b)2、A【解析】【分析】根据为第四象限内的点,可
9、得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解【详解】解:为第四象限内的点, , ,一次函数的图象经过第一、二、三象限故选:A【点睛】本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键3、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可【详解】解:满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于
10、x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;,当时,则y不是x的函数;综上,是函数的有故选:B【点睛】本题主要考查了函数的定义在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数4、A【解析】【分析】根据两个一次函数的交点坐标即可得【详解】解:一次函数的图象与的图象相交于点,方程组的解为,故选:A【点睛】本题考查了利用一次函数的交点确定方程组的解,掌握函数图象法是解题关键5、A【解析】【分析】设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析
11、式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解【详解】解:设直线的解析式为 ,把点,点代入,得: ,解得:,直线的解析式为,将直线向下平移8个单位得到直线,直线的解析式为 ,点关于轴对称的点为 ,设直线的解析式为 ,把点 ,点代入,得: ,解得:,直线的解析式为,将直线与直线的解析式联立,得: ,解得: ,直线与直线的交点坐标为故选:A【点睛】本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键6、D【解析】【分析】根据
12、函数图象分别求得甲、乙两超市每月工资y(元)与员工销售量x(件)之间的函数关系式,根据一次函数的性质逐项分析判断【详解】解:根据函数图性,设甲的解析式为:,乙的解析式为:将代入,得解得将代入,得解得A.根据函数图像可知,当时,即选择乙超市工资更高,故该选项正确,符合题意;B.当时,当时,即想要获得3000元的工资,甲超市需要的销售量更少,故该选项正确,符合题意;C.根据题意,甲超市的工资为,时,即底薪为元,当时,则,即在甲超市每销售一件牛奶可得提成3元,故该选项正确,符合题意;D.当时,(元),即销售量为1500件时,甲超市比乙超市工资高出1000元,故该选项不正确,不符合题意;故选D【点睛】
13、本题考查了一次函数的应用,根据函数图象求得解析式是解题的关键7、D【解析】【分析】根据一次函数的定义即可求解【详解】A.不是一次函数,B.不是一次函数,C.不是一次函数,D.是一次函数故选D【点睛】一次函数的定义一般地,形如y=kx+b(k,b是常数,k0)的函数,叫做一次函数当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数8、D【解析】【分析】先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式【详解】解:由图可知:A(0,3),xB=1点B在直线y=2x上,yB=21=2,点B的坐标为(1,2),设直线AB的解析式为y=kx+b,则有:,解得:,直线AB的解
14、析式为y=-x+3;故选:D【点睛】本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键9、D【解析】【分析】由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题【详解】解:由图可得,甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;甲的速度为:200.6(km/h),则甲行驶0.3h时的路程为:0.310(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;当乙摩托车到达A地时,甲摩托车距离A地:0.5(km),故选项C正确;乙的速度为:200.540(km/h),则甲、乙
15、相遇时所用的时间是(小时),故选项D错误;故选:D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答10、A【解析】【分析】首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系【详解】解:一次函数y3x1中,k30,y随x的增大而减小,21,y1y2故选:A【点睛】此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性二、填空题1、3【解析】【分析】由图2可知,当到P与C重合时最大,ABP的面积最大,此时可求得BC=2;然后可知当P在CD上移动时面积不变,可知CD5-23,因此可求B
16、CD的面积【详解】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则ABP面积y在BC段随x的增大而增大;在CD段,ABP的底边不变,高不变,因而面积y不变化由图2可以得到:BC=2,CD=3,BCD的面积是23=3故答案为:3【点睛】本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键2、x0【解析】【分析】由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可【详解】解:函数的定义域是:x0故答案为:x0【点睛】本题考查求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可
17、取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负3、x2【解析】【分析】观察函数图象,写出一次函数y=kx+b的图象不在一次函数y=mx+n的图象上方的自变量的取值范围即可【详解】解:当x2时,kx+bmx+n,所以不等式kx+bmx+n的解集为x2故答案为:x2【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合4、 (0,2)【解
18、析】【分析】当x=0时,求y的值,从而确定直线与y轴的交点【详解】解:当x0时,y2,直线yx2与y轴交点坐标是(02)故答案为:(0,2)【点睛】本题考查一次函数与坐标轴的交点坐标,利用数形结合思想解题是关键5、【解析】【分析】根据题意直接把x代入解析式进行计算即可求得答案【详解】解:函数f(x)+x,f()+2,故答案为:2【点睛】本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式三、解答题1、(1)无人机的速度为25米/分;(2)2;15;(3)9【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)
19、根据(1)中求得的结果,由路程=速度时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可【详解】解:(1)无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,无人机的速度为75-50=25米/分;(2)由题意得:a=5025=2,b=7525+12=15,故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像2、(1)3000;(2)1500;(3)18或30【解析】【分析】(1)根据一次函数图象,两人同时从家出发后的
20、速度一致,根据张明的路程除以时间即可求得速度,根据题意m=15,即可求得n的值;(2)根据(1)中m,n的值代入函数解析式,求得y2,根据图象求得y1,根据题意求得当x=20时,y1-y2的值即可求解;(3)分两种情况讨论,当张明的爸爸返回时,张明继续跑,和张明返回时,根据(2)的结论令y1-y2=900,解方程即可求解【详解】解:(1)400020=200米每分钟根据题意张明继续前行,5分钟后也原路返回,m=20-5=15n=15200=3000故答案为:3000;(2)设y1=ax+c,y2=kx+b将20,4000,45,0代入y1,将点15,3000,45,0代入y2,得20a+c=4
21、00045a+c=0,15k+b=300045k+b=0解得a=-160c=7200,k=-100b=4500y1=-160x+7200,y2=-100x+4500根据题意x=20时,y1-y2=-16020+7200-10020+4500=4000-2500=1500(米)故答案为:1500;(3)当张明的爸爸返回时,张明继续跑,和张明返回时,设两人从家出发,至20分钟返回时的解析式为y=ax,将20,4000代入,即4000=20a解得a=200即y=200x200x-100x+4500=900解得x=18两人都返回时,则y1-y2=900-160x+7200-100x+4500=900解
22、得x=30第30分钟时,两人相距900米故答案为:18或30【点睛】本题考查了一次函数的应用,根据函数图象获取信息是解题的关键3、(1)k=-1b=4;(2)(0,-123)【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A、C的坐标,利用待定系数法即可求出k、b的值;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m0),根据三角形的面积公式结合SCOD=3SBOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标【详解】解:(1)当x=1时,y=3x=3,点C的坐标为(1,3)将A(-2,6)、C(1,3)代
23、入y=kx+b,得:-2k+b=6k+b=3,解得:k=-1b=4(2)当y=0时,有-x+4=0,解得:x=4,点B的坐标为(4,0)设点D的坐标为(0,m)(my2,y1y2时,即:30x+10025x+150,解得x10,即当采摘量超过10千克时,选择乙采摘园;当y1y2时,即:30x+10025x+150,解得x10,即当采摘量超过6千克且少于10千克时,选择甲采摘园;由上可得,当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【点睛】本题考查了一次函数的实际应用,正确理解题意列出函数关系式是解题的关键