《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称综合测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称综合测评试卷(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中不是轴对称图形的是( )ABCD2、下列是部分防疫图标,其中是轴对称图形的是( )ABCD3、下面所给的
2、银行标志图中是轴对称图形的是( )ABCD4、放风筝是我国人民非常喜爱的一项户外娱乐活动,下列风筝剪纸作品中,不是轴对称图形的是()ABCD5、如图,ABC与ABC关于直线MN对称,BB交MN于点O,则下列结论不一定正确的是()AACACBBOBOCAAMNDABBC6、下列学习用具中,不是轴对称图形的是()ABCD7、如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF将BEF对折,点B落在直线EF上的点B 处,得折痕EM;将AEF对折,点A落在直线EF上的点A 处,得折痕EN则NEM的度数为( )A105oBCD不能确定8、下列有关绿色、环保主题的四个标志中,是轴对称图形是(
3、)A B C D 9、下列四个标志中,是轴对称图形的是( )ABCD10、下列图形中,是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一张长方形纸条ABCD沿EF折叠,若EFG47,则BGP_2、如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与反射光线的夹角为50,则平面镜与水平地面的夹角的度数是_3、如图,ABC中,点D在边BC上,将点D分别以AB、AC为对称轴,画出对称点E、F,连接AE、AF根据图中标示的角度,可知EAF_4、如图的三角形纸片中,AB8,BC6,AC5,沿过点B的直线折叠这个三角形,使得点C落在AB
4、边上的点E处,折痕为BD,则AED的周长_5、如图,在中,点A关于的对称点是,点B关于的对称点是,点C关于的对称点是,若,则的面积是_三、解答题(5小题,每小题10分,共计50分)1、如图、图、图都是33的正方形网格,每个小正方形的顶点称为格点A,B,C均为格点在给定的网格中,按下列要求画图:(1)在图中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M、N为格点;(2)在图中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点;(3)在图中,画一个DEF,使DEF与ABC关于某条直线对称,且D,E,F为格点2、如图是三个55的正方形网格,请你用三种不同
5、的方法分别把每幅图中的一个白色小正方形涂上阴影,使每幅图中的阴影部分成为一个轴对称图形3、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在ABC中,ABAC(如图),怎样证明CB呢?(分析)把AC沿A的角平分线AD翻折,因为ABAC,所以点C落在AB上的点C处,即ACAC,据以上操作,易证明ACDACD,所以ACDC,又因为ACDB,所以CB(感悟与应用)(1)如图(1),在ABC中,ACB90,B30,CD平分ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分DAB,CDCB求证:BD1804、作ABC关于y轴对称的A1B
6、1C15、某居民小区要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆和正方形的个数不限),并且使整个矩形场地为轴对称图形请给出你的设计方案-参考答案-一、单选题1、C【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握沿对称轴折叠后,两部分能够完全重合的图形是轴对称图形是解题的关键2、C【分析】直接根据轴对称图形的概念分别解答得出答案如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个
7、图形叫做轴对称图形【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C【点睛】本题考查的是轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,解题关键是掌握轴对称图形的概念3、B【分析】根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项分析判断即可【详解】解:A.不是轴对称图形,故该选项不正确,不符合题意;B.是轴对称图形,故该选项正确,符合题意;C. 不是轴对称
8、图形,故该选项不正确,不符合题意;D. 不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、B【分析】根据轴对称图形的概念求解在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴【详解】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意故选:B【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合5、D【分析
9、】根据轴对称的性质解答【详解】解:ABC与ABC关于直线MN对称,BB交MN于点O,ACAC,BOBO,AAMN,但ABBC不正确,故选:D【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键6、B【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一分析即可.【详解】解:选项A中的图形是轴对称图形,故A不符合题意;选项B中的图形不是轴对称图形,故B符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,掌握轴对称图形的定义是
10、解题的关键.7、B【分析】由折叠的性质可得:再结合邻补角的含义可得答案.【详解】解:由折叠的性质可得: 故选B【点睛】本题考查的是轴对称的性质,角平分线的含义,邻补角的含义,利用轴对称的性质证明是解本题的关键.8、B【分析】结合轴对称图形的概念进行求解【详解】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、D【分析】利用轴对称图形的定义进行解答即可【详解】解:A、不是轴对称图形,故此选项不合题意
11、;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形10、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键二、填空题1、86【分析】由长方形的
12、对边平行得到AD与BC平行,利用两直线平行内错角相等得到DEFEFG47,BGPAEP,根据折叠的性质得到GEFDEF47,根据平角的定义求出AEP的度数,即可确定出BGP的度数【详解】解:四边形ABCD是长方形,ADBC,DEFEFG47,BGPAEP,由折叠的性质得到GEFDEF47,AEP180DEFGEF86,BGP86故答案为:86【点睛】此题考查了平行线的性质,折叠的性质以及平角定义,熟练掌握平行线的性质是解本题的关键2、65【分析】作CD平面镜,垂足为G,交地面于D根据垂线的性质可得CDH+=90,根据平行线的性质可得AGC=CDH,根据入射角等于反射角可得,从而可得夹角的度数【
13、详解】解:如图,作CD平面镜,垂足为G,交地面于DCDH+=90,根据题意可知:AGDF,AGC=CDH,CDH=25,=65故答案为:65【点睛】本题考查了入射角等于反射角问题,解决本题的关键是掌握平行线的性质、明确法线CG平分AGB3、106【分析】连接AD,根据轴对称的性质求出,再根据三角形的内角和定理求出,最后应用等价代换思想即可求解【详解】解:如下图所示,连接AD点E和点F是点D分别以AB、AC为对称轴画出的对称点,故答案为:106【点睛】本题考查轴对称的性质,熟练掌握该知识点是解题关键4、7【分析】根据折叠的性质,可得BE=BC=6,CD=DE,从而AE=AB-BE=2,再由AED
14、的周长AD+DE+AE,即可求解【详解】解:沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,BE=BC=6,CD=DE,AB8,AE=AB-BE=2,AED的周长AD+DE+AE=AD+CD+AE=AC+DE=5+2=7故答案为:7【点睛】本题主要考查了折叠的性质,熟练掌握折叠前后对应线段相等,对应角相等是解题的关键5、18【分析】连接BB,并延长交CA于点D,交AC于点E,再根据对称的性质可知CBBC,ABBA,AC/AC,AC=AC,且BBAC,BEBE,得BD3BE,然后利用三角形面积公式可得到SABC3SABC【详解】解:连接BB,并延长交CA于点D,交AC于点E,如图,点
15、B关于AC的对称点是B,EBEB,BBAC,点C关于AB的对称点是C,BCBC,点A关于BC的对称点是A,ABAB,而ABCABC,ABCABC(SAS),CACB,ACAC,ACAC,DEAC,而ABCABC,BDBE,BD3BE,SABCACBE3BDAC3SABCSABC SABC 故答案为18【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)画线段AB关于大的正方形的对角线对称的线段MN即可;(2)画线段AC关于大的正方形的对角线对称的线段PQ即可;(3)分别确定
16、关于大正方形的对角线的对称点,再顺次连接即可【详解】解:(1)如图所示,线段MN是所求作的线段,(2)如图所示,线段PQ是所求作的线段,(3)如图所示,是所求作的三角形,【点睛】本题考查的是轴对称的性质与作图,轴对称图案的设计,掌握“先确定好对称轴再画图”是解题的关键.2、见解析【分析】根据轴对称图形的定义求解即可轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:如图所示,【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形3、(1)AC+AD=BC;(2)证明
17、见解答过程;【分析】(1)把AC沿ACB的角平分线CD翻折,点A落在BC上的点A处,连接AD,根据直角三角形的性质求出A,根据三角形的外角性质得到ADB=B,根据等腰三角形的判定定理得到AD=AB,结合图形计算,证明结论;(2)将AD沿AC翻折,使D落在AB上的D处,连接CD,根据全等三角形的性质得到CD=CD=BC,D=ADC,进而证明结论;【详解】(1)解:AC+AD=BC,理由如下:如图,把AC沿ACB的角平分线CD翻折,点A落在BC上的点A处,连接AD,ACB=90,B=30,A=90-B=60,由折叠的性质可知,CA=CA,AD=AD,CAD=A=60,B=30,ADB=CAD-B=
18、30,ADB=B,AD=AB,AD=AB,BC=CA+AB=AC+AD;(2)证明:如图,将AD沿AC翻折,使D落在AB上的D处,连接CD,则ADCADC,CD=CD=BC,D=ADC,B=BDC,BDC+ADC=180,B+D=180【点睛】本题考查的是翻折变换的性质、等腰三角形的性质,掌握翻折变换的性质是解题的关键4、见解析【分析】直接利用轴对称图形的性质得出对应点位置进而得出答案【详解】解:如图所示:【点睛】本题主要考查了利用轴对称变换作图,几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始5、见解析(答案不唯一)【分析】轴对称图形:把一个图形沿某条直线对折,对折后直线两旁的部分能完全重合根据轴对称图形的定义进行设计即可【详解】解:如图,或如图,【点睛】本题考查的是轴对称图形的含义,设计轴对称图案,掌握“轴对称图形的定义”是解题的关键.