《2022年精品解析京改版八年级数学下册第十五章四边形综合测评练习题.docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版八年级数学下册第十五章四边形综合测评练习题.docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D82、下列图形中,可以看作是中心
2、对称图形的是( )ABCD3、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80,那么CDE的度数为( )A20B25C30D354、一个多边形纸片剪去一个内角后,得到一个内角和为2340的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或175、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D136、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大360D内角和与外角和相等7、如图,在平面直角坐标系中,点A是x轴正半轴
3、上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为( )A22B18C14D108、下列四个图形中,为中心对称图形的是()ABCD9、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD10、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点P是矩形ABCD的对角线AC上一点,过点P作EFBC,分别交AB,CD于点E、F,连接PB、PD,若AE
4、2,PF9,则图中阴影面积为_;2、如图,在矩形ABCD中,AB3,BC4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,PAB的面积为_3、若一个n边形的每个内角都等于135,则该n边形的边数是_4、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知(1)以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最小值是_5、如图,在正方形ABCD中,AB4,E为对角线AC上与A,C不重合的一个动点,过点E作EFAB于点F,EGBC于点G,连接DE,FG,下列结论:DEFG;DEFG;BFGADE;FG的最小值为
5、3其中正确结论的序号为_三、解答题(5小题,每小题10分,共计50分)1、如图是两张1010的方格纸,方格纸中的每个小正方形的边长均为1请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形2、如图,平行四边形ABCD中,对角线AC、BD相交于点O,ABAC,AB=3,AD=5,求BD的长3、如图:在中,点为的中点,点为直线上的动点(不与点,重合),连接,以为边在的上方作等边,连接(1)是_三角形;(2)如图1,当点
6、在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由4、已知:ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BMDN,BM=DN5、如图,在RtABC中,ACB90,B30,AB20点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQAB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与RtABC重叠部分图形的面积为S(S0),点P的运动时间为t秒(1)
7、BC的长为 ;用含t的代数式表示线段PQ的长为 ;(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于RtABC的一边时,直接写出t的值-参考答案-一、单选题1、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线
8、定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键2、A【分析】根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可【详解】解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A选项是中心对称图形故本选项正确故选:A【点睛】本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键3、C【分析】依题意得出AE=AB=AD,ADE=50,又因为B=80故可推出ADC=80,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80,AE=AB=AD,在三角
9、形AED中,AE=AD,DAE=80,ADE=50,又B=80,ADC=80,CDE=ADC-ADE=30故选:C【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得ADE的度数4、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180=2340,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故
10、选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180(n为边数)是解题的关键5、B【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解【详解】解:直角三角形两直角边长为5和12,斜边,此直角三角形斜边上的中线的长6.5故选:B【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键6、D【分析】直接利用多边形内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360,故本选项表述错误;B四边形的内角和与外角和相等,都等于360,故本选项表述错误;C六
11、四边形的内角和与外角和相等,都等于360,故本选项表述错误;D四边形的内角和与外角和相等,都等于360,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是3607、B【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,
12、最大值为18故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用8、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以是中心对称图形;选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以不是中心对称图形;故选:B【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心9、C【分析】根据轴对称图形和中心对称图形的概念,对
13、各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合1
14、0、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边
15、形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键二、填空题1、【分析】作PMAD于M,交BC于N,根据矩形的性质可得SPEB=SPFD即可求解.【详解】解:作PMAD于M,交BC于N则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,,,S阴=9+9=18,故答案为:18【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明2、或或3【
16、分析】过B作BMAC于M,根据矩形的性质得出ABC90,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:ABBP3,ABAP3,APBP,分别画出图形,再求出面积即可【详解】解:四边形ABCD是矩形,ABC90,由勾股定理得:,有三种情况:当ABBP3时,如图1,过B作BMAC于M,SABC,解得:,ABBP3,BMAC,APAM+PM,PAB的面积;当ABAP3时,如图2,BM,PAB的面积S;作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则APBP,BNAN,四边形ABCD是矩形,NQAC,PNBC,ANBN,APCP,PAB的面积;即PAB的面积为或或3故答
17、案为:或或3【点睛】本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键3、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:一个n边形的每个内角都等于135,则这个n边形的每个外角等于该n边形的边数是故答案为:【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键4、1 【分析】(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明OAEODF,利用全等三角形的性质得出四边形EOFD的面积等于AOD的面积即可求解;(2)根据全等三角形的
18、性质证得EOF为等腰直角三角形,则EF=OE,当OEAD时OE最小,则EF最小,求解此时在OE即可解答【详解】解:(1)连接OA、OD,四边形ABCD是正方形,OA=OD,AOD=90,EAO=FDO=45,AOE+DOE=90,OEOF,DOF+DOE=90,AOE=DOF,在OAE和ODF中,OAEODF(ASA),SOAE=SODF,S四边形EOFD = SODE+SODF= SODE+SOAE= SAOD= S正方形ABCD,AD=2,S四边形EOFD= 4=1,故答案为:1;(2)OAEODF,OE=OF,EOF为等腰直角三角形,则EF=OE,当OEAD时OE最小,即EF最小,OA=
19、OD,AOD=90,OE=AD=1,EF的最小值,故答案为:【点睛】本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键5、【分析】连接BE,可得四边形EFBG为矩形,可得BEFG;由AEBAED可得DEBE,所以DEFG;由矩形EFBG可得OFOB,则OBFOFB;由OBFADE,则OFBADE;由四边形ABCD为正方形可得BAD90,即AHD+ADH90,所以AHD+OFH90,即FMH90,可得DEFG;由中的结论可得BFGADE;由于点E为AC上一动点,当DEAC时,根据垂线段最短可得此时DE最小
20、,最小值为2,由知FGDE,所以FG的最小值为2【详解】解:连接BE,交FG于点O,如图,EFAB,EGBC,EFBEGB90ABC90,四边形EFBG为矩形FGBE,OBOFOEOG四边形ABCD为正方形,ABAD,BACDAC45在ABE和ADE中,ABEADE(SAS)BEDEDEFG正确;延长DE,交FG于M,交FB于点H,ABEADE,ABEADE由知:OBOF,OFBABEOFBADEBAD90,ADE+AHD90OFB+AHD90即:FMH90,DEFG正确;由知:OFBADE即:BFGADE正确;点E为AC上一动点,根据垂线段最短,当DEAC时,DE最小ADCD4,ADC90,
21、AC4DEAC2由知:FGDE,FG的最小值为2,错误综上,正确的结论为:故答案为:【点睛】本题考查了全等三角形的性质与判定,正方形的性质,勾股定理,垂线段最短,掌握正方形的性质是解题的关键三、解答题1、(1)画图见解析;(2)画图见解析【分析】(1)利用平行四边形的性质结合其面积求法得出答案,答案不唯一;(2)利用矩形的性质结合其周长得出答案,答案不唯一【详解】解:(1)如图1所示:(2)如图2所示:答案不唯一【点睛】本题主要考查了画轴对称图形和中心对称图形,解决本题的关键是要熟练正确把握中心对称图形和轴对称图形的性质2、【分析】根据平行四边形的性质可得,勾股定理求得,进而求得【详解】解:四
22、边形是平行四边形 ABAC,在中,在中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键3、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明OBC是等边三角形;(2)先证明,即可利用SAS证明,得到;(3)先证明,即可利用SAS证明,得到【详解】(1)ACB=90,A=30,O是AB的中点,OBC是等边三角形,故答案为:等边;(2)由(1)可知,是等边三角形,即,在和中,;(3)成立,证明:由(1)可知,是等边三角形,即,在和中,【点睛】本题主要考查了等边三角形
23、的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键4、见解析【分析】连接,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证【详解】如图,连接,四边形ABCD为平行四边形,AO=OC,DO=OBM为AO的中点,N为CO的中点,即MO=ON四边形是平行四边形,BMDN,BM=DN【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键5、(1);(2)t的值为或;(3)S=-t2+20t或S=;
24、(4)t=2s或s【分析】(1)由勾股定理可求解;由直角三角形的性质可求解;(2)分两种情况讨论,由QM的长度为10,列出方程可求解;(3)分两种情况讨论,由面积公式可求解;(4)分两种情况讨论,由含30角的直角三角形三边的比值可求解【详解】解:(1)ACB=90,B30,AB20,AC=10,BC=;PQAB,BQP=90,B=30,PQ=,由题意得:BP=2t,PQ=t,故答案为:t;(2)在RtPQB中,BQ=3t,当点M与点Q相遇,20=AM+BQ=4t+3t,t=,当0t时,MQ=AB-AM-BQ,20-4t-3t=10,t=,当t=5时,MQ=AM+BQ-AB,4t+3t-20=1
25、0,t=,综上所述:当QM的长度为10时,t的值为或;(3)当0t时,S=PQMQ=t(20-7t)=-t2+20t;当t5时,如图,四边形PQMN是矩形,PN=QM=7t-20,PQ=t,B=30,MEBEBM=12,BM=20-4t,ME=,S=;(4)如图,若NQAC,NQBC,B=MQN=30,MNNQMQ=12,MQ=20-7t,MN=PQ=,t=2,如图,若NQBC,NQAC,A=BQN=90-B=60,PQN=90-BQN=30,PNNQPQ=12,PN=MQ=7t-20,PQ=,t=,综上所述:当t=2s或s时,过点Q和点N的直线垂直于RtABC的一边【点睛】本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键