精品试题沪科版九年级数学下册第24章圆同步训练试题(含答案解析).docx

上传人:可****阿 文档编号:32550311 上传时间:2022-08-09 格式:DOCX 页数:31 大小:1.35MB
返回 下载 相关 举报
精品试题沪科版九年级数学下册第24章圆同步训练试题(含答案解析).docx_第1页
第1页 / 共31页
精品试题沪科版九年级数学下册第24章圆同步训练试题(含答案解析).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《精品试题沪科版九年级数学下册第24章圆同步训练试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品试题沪科版九年级数学下册第24章圆同步训练试题(含答案解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD2、如图,圆形螺帽的内接正六边形的面积

2、为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm3、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD4、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D5、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD6、如图,点A、B、C在上,则的度数是( )A100B50C40D257、如图,AB为的直径,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )ABC3D8、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD9、如图,AB

3、是O的直径,点C是O上一点,若BAC30,BC2,则AB的长为( )A4B6C8D1010、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120不变,则四边形ADBC的面积S的最大值是 _2、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是_3、如图,在O中,AB10,BC12,D是上

4、一点,CD5,则AD的长为_4、如图,、分别与相切于A、B两点,若,则的度数为_5、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBAC(1)求证:PB是O的切线;(2)连接OP,若OPBC,且OP8,O的半径为3,求BC的长2、如图,内接于,BC是的直径,D是AC延长线上一点(1)请用尺规完成基本作图:作出的角平分线交于点P(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E则PE与有怎样的位置关系?请说明理由3、如图

5、,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示(1)阴影部分的周长;(2)阴影部分的面积(结果保留)4、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG(1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE求证:BE平分AEC取BC的中点P,连接PH,求证:PHCG若BC2AB2,求BG的长(2)若点A,E,D第二次在同一直线上,BC2AB4,直接写出点D到BG的距离5、如图,在ABC中,ACB=90,AC=BC,D是AB边上一点(与A、B不重合),连

6、接CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连接DE、BE(1)求证:ACDBCE;(2)若BE=5,DE=13,求AB的长-参考答案-一、单选题1、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键2、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径

7、【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键3、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转

8、180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合4、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+

9、HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点5、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到

10、求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90,CDB=30,COB=2CDB=60,OCE=30,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键6、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,AOB=100,OA=OB,OAB=O

11、BA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半7、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键8、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:

12、阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键9、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30角所对的直角边等于斜边的一半,即可求解【详解】解:AB是O的直径, ,BAC30,BC2, 故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30角所对的直角边等于斜边的一半是解题的关键10、C【分析】由题意根据函数解析式求得A(

13、-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关

14、键二、填空题1、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质2、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即

15、可求解【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键关于原点对称的两个点,横坐标、纵坐标分别互为相反数3、3【分析】过A作AEBC于E,过C作CFAD于F,根据圆周角定理可得ACB=B=D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明ABECDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解【详解】解:过A作AEBC于E,过C作CFAD于F,则AEB=CFD=90, AB10,ACB=B=D,AB=AC=10

16、,AEBC,BC=12,BE=CE=6, ,B=D,AEB=CFD=90,ABECDF,AB=10,CD=5,BE=6,AE=8,解得:DF=3,CF=4,在RtAFC中,AFC=90,AC=10,CF=4,则,AD=DF+AF=32,故答案为:32【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键4、【分析】根据已知条件可得出,再利用圆周角定理得出即可【详解】解:、分别与相切于、两点,故答案为:【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键5、90【分析】先根据是的内接正六边

17、形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论【详解】解:是的内接正六边形一边 故答案为90【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键三、解答题1、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长(1)证明:连接,如图所示:是的直径,即,是的切线;(2)解:的半径为,又,即,【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定2、(1)作图见解析(2)是的切线,

18、理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点(2)如图2所示,连接,由题意可知,;在四边形中,求出,得出,由于是半径,故有是的切线(1)解:如图1所示(2)解:是的切线如图2所示,连接由题意可知,在四边形中又是半径是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点解题的关键在于将知识综合灵活运用3、(1)16(2)24【分析】(1)由阴影部分的周长两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解(1)解:阴影部分的周长226+1

19、6;(2)解:阴影部分的面积S半圆+S扇形BACS半圆S扇形BAC,阴影部分的面积24答:阴影部分的周长为16,阴影部分的面积为24【点睛】本题考查了扇形的弧长公式和面积公式,如果扇形的圆心角是n,扇形的半径为r,则扇形的弧长l的计算公式为:,扇形的面积公式:4、(1)见解析;见解析;(2)【分析】(1)根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;如图2,过点作的垂线,解直角三角形即可得到结论(2)如图3,连接,过作交的延长线于,交的延长线于,根据旋转的性质得到,

20、解直角三角形得到,根据三角形的面积公式即可得到结论(1)解:证明:矩形绕着点按顺时针方向旋转得到矩形,又,平分;证明:如图1,过点作的垂线,平分,即点是中点,又点是中点,;解:如图2,过点作的垂线,;(2)解:如图3,连接,过作交的延长线于,交的延长线于,将矩形绕着点按顺时针方向旋转得到矩形,点,第二次在同一直线上,【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线5、(1)见解析;(2)17【分析】(1)由旋转的性质可得CDCE,DCE90ACB,由“SAS”可证ACDBCE;(2)由ACB90,ACBC,可得CABCBA45,再由ACDBCE,得到BEAD=5,CBECAD45,则ABEABC+CBE90,然后利用勾股定理求出BD的长即可得到答案【详解】解:(1)证明:将线段CD绕点C按逆时针方向旋转90得到线段CE,CDCE,DCE90ACB,ACD+BCD=BCE+BCD,即ACDBCE,在ACD和BCE中,ACDBCE(SAS);(2)ACB90,ACBC,CABCBA45,ACDBCE,BEAD=5,CBECAD45,ABEABC+CBE90,AB=AD+BD=17【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁