难点详解沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析).docx

上传人:可****阿 文档编号:32548496 上传时间:2022-08-09 格式:DOCX 页数:34 大小:954.14KB
返回 下载 相关 举报
难点详解沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析).docx_第1页
第1页 / 共34页
难点详解沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《难点详解沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《难点详解沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三角形的外角和是()A60B90C180D3602、如图,E为线段BC上一点,ABE=AED=ECD=90,A

2、E=ED,BC=20,AB=8,则BE的长度为( )A12B10C8D63、如图,AD是的角平分线,垂足为F若,则的度数为( )A35B40C45D504、如图,已知,要使,添加的条件不正确的是( )ABCD5、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D186、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )ABCD7、如图,在ABC中,BD平分ABC,C2CDB,AB12,CD3,则ABC的周长为()A21B24C27D308、下列三个说法:有一个内角是30,腰长是6的两个等腰三角形全

3、等;有一个内角是120,底边长是3的两个等腰三角形全等;有两条边长分别为5,12的两个直角三角形全等其中正确的个数有( )A3B2C1D09、根据下列已知条件,不能画出唯一的是( )A,B,C,D,10、如图,直线l1l2,被直线l3、l4所截,并且l3l4,146,则2等于()A56B34C44D46第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知点是射线上一点,过作交射线于点,交射线于点,给出下列结论:是的余角;图中互余的角共有3对;的补角只有;与互补的角共有3个,其中正确结论有_(把你认为正确的结论的序号都填上)2、如图,把ABC绕点C顺时针旋转某个角度

4、得到,A30,170,则旋转角的度数为_3、如图,在中,E为BC延长线上一点,与的平分线相交于点D,则D的度数为_4、已知a,b,c是的三边长,满足,c为奇数,则_5、如图,点E,F分别为线段BC,DB上的动点,BEDF要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _三、解答题(10小题,每小题5分,共计50分)1、如图,是的角平分线,于点(1)用尺规完成以下基本作图:过点作于点,连接交于点(不写作法,保留作图痕迹)(2)在(1)中所作的图形中,求证:2、如图,在中,、分别是上的高和中线,求的长3、命题:如图,已知,共线,(1),那么(1)从和两个条件中,选择一个填入横线,使得上述命

5、题为真命题,你选择的条件为_(填序号);(2)根据你选择的条件,判定的方法是_;(3)根据你选择的条件,完成的证明4、如图,在中,点D是内一点,连接CD,过点C作且,连接AD,BE求证:5、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:126、下面是“作一个角的平分线”的尺规作图过程已知:如图,钝角求作:射线OC,使作法:如图,在射线OA上任取一点D;以点为圆心,OD长为半径作弧,交OB于点E;分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;作射线OC则OC为所求作的射线完成下面的证明证明:连接CD,CE由作图步骤可知_由作图步骤可知_,(_)(填推理的依据

6、)7、如图,求证:8、已知AMCN,点B在直线AM、CN之间,ABBC于点B(1)如图1,请直接写出A和C之间的数量关系: (2)如图2,A和C满足怎样的数量关系?请说明理由(3)如图3,AE平分MAB,CH平分NCB,AE与CH交于点G,则AGH的度数为 9、如图,是等边三角形,分别交AB,AC于点D,E(1)求证:是等边三角形;(2)点F在线段DE上,点G在外,求证:10、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE= 度;(2)设,如图

7、2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上(线段BC之外)移动,则,之间有怎样的数量关系?请直接写出你的结论-参考答案-一、单选题1、D【分析】根据三角形的内角和定理、邻补角的性质即可得【详解】解:如图,又,即三角形的外角和是,故选:D【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键2、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度【详解】解:由题意可知:ABE=AED=ECD=90,在和中, ,故选:A【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形

8、全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路3、B【分析】根据三角形的内角和求出ACB90,利用三角形全等,求出DCDE,再利用外角求出答案【详解】解:CAB40,B50,ACB180405090,CEAD,AFCAFE90,AD是ABC的角平分线,CADEAD4020,又AFAF,ACFAEF(ASA)ACAE,ADAD,CADEAD,ACDAED (SAS),DCDE,DCEDEC,ACE902070,DCEDECACBACE907020,BDEDCEDEC202040,故选:B【点睛】考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角

9、和求出相应各个角的度数是解决问题的关键4、D【分析】已知条件ABAC,还有公共角A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可【详解】解:A、添加BDCE可得ADAE,可利用利用SAS定理判定ABEACD,故此选项不合题意;B、添加ADCAEB可利用AAS定理判定ABEACD,故此选项不合题意;C、添加BC可利用ASA定理判定ABEACD,故此选项不合题意;D、添加BECD不能判定ABEACD,故此选项符合题意;故选:D【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键5、B

10、【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO=3x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, 纸条的宽NO=72=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用

11、题,解题的关键是正确分析题目中的等量关系列出方程求解6、D【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得85x8+5,确定x的范围即可得到答案【详解】解:设第三根木棒长为x厘米,由题意得:85x8+5,即3x13,故选:D【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和第三边,任意两边之差第三边7、C【分析】根据题意在AB上截取BE=BC,由“SAS”可证CBDEBD,可得CDB=BDE,C=DEB,可证ADE=AED,可得AD=AE,进而即可求解【详解】解:如图,在AB上截取BEBC,连接DE,BD平分ABC,ABDCBD,在CBD和EBD中,CBDEB

12、D(SAS),CDBBDE,CDEB,C2CDB,CDEDEB,ADEAED,ADAE,ABC的周长AD+AE+BE+BC+CDAB+AB+CD27,故选:C【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键8、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30,一个是顶角是30时,两三角形就不全等,故本选项错误;有一个内角是120,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛

13、】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键9、B【分析】根据三角形存在的条件去判断【详解】,满足ASA的要求,可以画出唯一的三角形,A不符合题意;,A不是AB,BC的夹角,可以画出多个三角形,B符合题意;,满足SAS的要求,可以画出唯一的三角形,C不符合题意;,AB最大,可以画出唯一的三角形,D不符合题意;故选B【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键10、C【分析】依据l1l2,即可得到3146,再根据l3l4,可得2904644【详解】解:如图:l1l2,146,3146,又l3l4,29

14、04644,故选:C【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180二、填空题1、【分析】根据垂直定义可得BAC=90,ADC=ADB=CAE=90,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可【详解】解: , 是的余角;故符合题意; , 互为余角,互为余角, ,互为余角,所以图中互余的角共有4对,故不符合题意; 与互补;1+DAC=90,BAD+DAC=90, 1=BAD, BAD+DAE=180, 1+DAE=180, 1与DAE互补, 故不符合题意; , 所以与互补的角有 共3个,故符合题意;所以正确的结论有:

15、故答案为:【点睛】本题考查的是垂直的定义,互余,互补的含义,三角形的内角和定理,掌握“互为余角的两个角之和为 互为补角是两个角之和为”是解本题的关键.2、#【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把ABC绕点C顺时针旋转某个角度得到,A30, 170, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.3、20度【分析】根据角平分线的性质得到,再利用三角形外角的性质计算【详解】解:与的平分线相交于点D,ACE=A+ABC,DCE=D+DBC,D=DCE-DBC=,故答案为:20【点睛】此题考查了三角形的外角性

16、质及角平分线的性质,熟记三角形外角的性质定理是解题的关键4、7【分析】绝对值与平方的取值均0,可知,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值【详解】解:,由三角形三边关系可得为奇数故答案为:7【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点解题的关键是确定所求边长的取值范围5、连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点【分析】按照连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点的步骤作图即可得【详解】解:步骤是连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以

17、点为圆心、长为半径画弧,交于点;如图,点即为所求故答案为:连接,作;以点为圆心、长为半径画弧,交于点;连接交于点;以点为圆心、长为半径画弧,交于点【点睛】本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键三、解答题1、(1)见解析;(2)见解析【分析】(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题【详解】解:(1)如图,点F、G即为所求作的点;(

18、2)是的角平分线,【点睛】本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键2、6cm【分析】先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.【详解】解:是边上的中线,是的中点,=.【点睛】本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.3、(1)(2)SAS(3)见解析【分析】(1)根据全等三角形的判定方法分析得出答案;(2)根据(1)直接填写即可;(3)利用SAS进行证明(1)解:,A=F,AC=EF,当时,可根据SAS证明;当时,不能证明,故答案为:;(2)解:当时,可

19、根据SAS证明,故答案为:SAS;(3)证明:在ABC和FDE中,【点睛】此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键4、证明见解析【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证【详解】证明:,在和中,【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键5、见详解【分析】根据等腰三角形三合一性质以及等边对等角性质得出ADBC,B=C,根据AFAD,利用在同一平面内垂直同一直线的两直线平行得出AFBC,利用平行线性质得出1=B,2=C即可【详解】证明:ABC中,ABAC,D为B

20、C边的中点,ADBC,B=C,AFAD,AFBC,1=B,2=C,12【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键6、OE; CE;全等三角形的对应角相等【分析】根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论【详解】证明:连接CD,CE由作图步骤可知_OE_由作图步骤可知_CE_,(_全等三角形对应角相等_)故答案为:OE; CE;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线

21、;过一点作已知直线的垂线)也考查了全等三角形的判定和性质7、证明过程见解析【分析】先证明,得到,再证明,即可得解;【详解】由题可得,在和中,又,在和中,【点睛】本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键8、(1)A+C90;(2)CA90,见解析;(3)45【分析】(1)过点B作BEAM,利用平行线的性质即可求得结论;(2)过点B作BEAM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论【详解】(1)过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,CCBE,ABBC,ABC90,A+CAB

22、E+CBEABC90故答案为:A+C90;(2)A和C满足:CA90理由:过点B作BEAM,如图,BEAM,AABE,BEAM,AMCN,BECN,C+CBE180,CBE180C,ABBC,ABC90,ABE+CBE90,A+180C90,CA90;(3)设CH与AB交于点F,如图,AE平分MAB,GAFMAB,CH平分NCB,BCFBCN,B90,BFC90BCF,AFGBFC,AFG90BCFAGHGAF+AFG,AGHMAB+90BCN90(BCNMAB)由(2)知:BCNMAB90,AGH904545故答案为:45【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题

23、的关键9、(1)见详解;(2)见详解【分析】(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;(2)连接AG,由题意易得AB=AC,然后可知ABFACG,则有AF=AG,进而可得FAG=60,最后问题可求证【详解】证明:(1)是等边三角形,DEBC,是等边三角形;(2)连接AG,如图所示:是等边三角形,AB=AC,ABFACG(SAS),是等边三角形,【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键10、(1)90;(2),见解析;或【分析】(1)由等腰直角三角形的性质可得ABCACB45,由“SAS”可证BADCAE,可得ABCACE45,可求BCE的度数;(2)由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论;分两种情况,由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论【详解】解:(1),AB=AC,AD=AE, 在和中,(2)或 理由:,即在和中, ,如图:,即在和中, ,综上所述:点D在直线BC上移动,+180或【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁