精品解析2022年京改版七年级数学下册第五章二元一次方程组定向练习试卷(名师精选).docx

上传人:可****阿 文档编号:32546924 上传时间:2022-08-09 格式:DOCX 页数:21 大小:375.10KB
返回 下载 相关 举报
精品解析2022年京改版七年级数学下册第五章二元一次方程组定向练习试卷(名师精选).docx_第1页
第1页 / 共21页
精品解析2022年京改版七年级数学下册第五章二元一次方程组定向练习试卷(名师精选).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《精品解析2022年京改版七年级数学下册第五章二元一次方程组定向练习试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《精品解析2022年京改版七年级数学下册第五章二元一次方程组定向练习试卷(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第五章二元一次方程组定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二元一次方程的解可以是( )ABCD2、已知,则( )ABCD3、为确保信息安全,信息需加密传输,发送方由明

2、文密文(加密),接收方由密文明文(解密)已知某加密规则为:明文,对应密文,例如,明文1,2,3,4对应密文5,7,18,16当接收方收到密文14,9,23,28时,解密得到的明文是( )A6,4,1,7B1,6,4,7C4,6,1,7D7,6,1,44、已知方程组中,x、y的值相等,则m等于( )A1或-1B1C5D-55、关于的二元一次方程组的解满足,则k的值是( )A2BCD36、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A5个B6个C7个D8个7、用代入消元法解二元一次方程组,将代入消去x,可得方程( )A(y2)2y0B(y2)2y0

3、Cxx2Dx2(x2)08、下列各方程中,是二元一次方程的是()A=y+5xB3x+2y=2x+2yCx=y2+1D9、九章算术卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()ABCD10、若方程组的解为,则方程组的解为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x,y满足, 则式子x29y2

4、的值为 _2、我国古代孙子算经记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x辆车,y人,则_,_3、已知方程组有无数多个解,则a、b的值等于_4、如果与是同类项,则xy的值是_5、购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需( )元三、解答题(5小题,每小题10分,共计50分)1、计算下列各题: (1) (2)解方程组:(3)解不等式组:,并把解集在数

5、轴上表示出来2、解方程(组)(1)10+2(x)7(x2);(2);(3)3、某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有30人没有座位;若租用同样数量的60座客车,则多出两辆车,且其余客车恰好坐满已知45座客车租金为每辆450元,60座客车租金为每辆650元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)请你设计一种租车方案,要求每位游客都有座位,费用又合算?4、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”例如:18的正因数有1、2、3、6、9、18,它

6、的真因数之和为;51的正因数有1、3、17、51,它的真因数之和为,所以称18和51为“亲和数”又如要找8的亲和数,需先找出8的真因数之和为,而,所以8的亲和数为,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”例如:121、1351等(1)10的真因数之和为_;(2)求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”5、解方程组(1) (2)-参考答案-一、单选题1、A【分析】把各

7、个选项答案带进去验证是否成立即可得出答案【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解2、B【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案【详解】解:由题意可知: 解得: ,故选:B【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方

8、程组的解法,本题属于基础题型3、A【分析】根据第四个密文列方程4d=28,解一元一次方程求出d,再根据第三个密文,列二元一次方程把d代入,求出第三个明文c,根据第二个密文列二元一次方程,代入第三个明文c,求出第二个明文b,根据第一个密文列二元一次方程,代入第二个明文b,求出第一个明文a得到明文为a,b,c,d即可【详解】解:设明文为a,b,c,d,某加密规则为:明文,对应密文,根据密文14,9,23,28,4d=28,解得d=7,=23,把d=7代入=23得解得=9,把代入=9得,解得a2b14,把代入a2b14得a2414,解得a=6,则得到的明文为6,4,1,7故选:A【点睛】此题考查了一

9、元一次方程与二元一次方程的应用,弄清题意分步列出方程是解本题的关键4、B【分析】根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可【详解】解:解方程组,得:,x、y的值相等,解得故选:B【点睛】本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键5、B【分析】解方程组,用含的式子表示,然后将方程组的解代入即可【详解】解:,得:,解得:,故选:B【点睛】本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便6、D【分析】设原来的两位数为10a+b,则新两位数为,根据新两位数比原两位数大9,列出方程,找出符合题

10、意的解即可【详解】解:设原来的两位数为10a+b,根据题意得:10a+b+910b+a,解得:ba+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数故选:D【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:十位上的数个位上的数,注意不要漏数7、B【分析】把x2y0中的x换成(y+2)即可【详解】解:用代入消元法解二元一次方程组,将代入消去x,可得方程(y+2)2y0,故选:B【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,

11、基本方法是代入消元和加减消元8、D【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别【详解】解:A、不是整式方程;故错误B、3x2y2x2y移项,合并同类项,得x0,只有一个未知数;故错误C、未知数y最高次数是2;故错误D、是二元一次方程,故正确故选:D【点睛】本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程9、B【分析】设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得【详解】解:设甲持钱x,乙

12、持钱y,根据题意,得:,故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组10、B【分析】由整体思想可得,求出x、y即可【详解】解:方程组的解为,方程组的解,;故选:B【点睛】本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键二、填空题1、-6【解析】【分析】利用加减消元法消去y,求出x的值,然后利用代入法求出y得到方程组的解,代入x29y2求解即可【详解】解:,由+得:2x=1,x=,把x=代入得:y=,x29y2=,故答案为:-6【点睛】本题考查了解二元一次方程组以及应用,掌握解方程组的方法和步骤

13、是解题的关键2、 15 39【解析】【分析】设有x辆车,有y人,根据“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘”列出方程组,解之即可【详解】解:设有x辆车,有y人,依题意得:,解得,故答案为:15,39【点睛】本题考查了二元一次方程组的应用,找准等量关系是解此题的关键3、a3,b14#b=-14,a=-3【解析】【分析】根据二元一次方程组有无数多个解的条件得出 ,由此求出a、b的值【详解】解:方程组有无数多个解,a3,b14故答案为:a3,b14【点睛】本题考查了对二元一次方程组的应用,注意:方程组 中,当时,方程组有无数解4、-1【解析】【分析】根据同类项的定义

14、:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可【详解】解:与是同类项,故答案为:-1【点睛】本题主要考查了同类项的定义和代数式求值,解题的关键在于能够熟练掌握同类项的定义5、5【解析】【分析】假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元,购买铅笔11支、作业本5本圆珠笔2支共需a元,由题意列出方程组,解方程组求出a的值,即为所求结果【详解】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元购买铅笔11支,作业本5本,圆珠笔2支共需a元则由题意得:,由得:,由得:,由得:,解得:故答案为:5【点睛】本题考查了列三元一次

15、不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程三、解答题1、(1)-4;(2);(3), 把解集在数轴上表示见解析【分析】(1)根据实数的运算法则进行运算,即可得出结论;(2)原方程组运用加减消元法求解即可得出结论;(3)分别解不等式,取其解集的并集,由此即可得出不等式组的解集,再将其表示在数轴上即可【详解】解:(1)= =-4 (2)解:,得,解得:,把代入,得,解得:,所以方程组的解是 (3)解:,由得到,解得, 由得到, 解得, 在数轴上表示如下:.【点睛】本题考查了实数的运算、解一元一次不等式组

16、、解二元一次方程组以及在数轴上表示不等式的解集,解题的关键是:(1)根据实数的运算法则进行运算;(2)熟练掌握方程组的解法;(3)熟练掌握不等式组的解法本题属于基础题,难度不大,解决该题型题目时,熟练掌握不等式(不等式组以及方程组)的解法是关键2、(1)x;(2)x4;(3)【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;(3)利用加减消元法解答即可【详解】解:(1)10+2(x)7(x2),去括号、得10+2x17x14,移项、得2x7x11014,合并同类项、得5x23,系数化为1,得x;(2),整理、得,去分母、得1

17、7+20x15x3,移项、得20x15x317,合并同类项、得5x20,系数化为1,得x4;(3)方程组整理,得,+,得6y6,解得y1,把y1代入,得x21,解得x3,故方程组的解为【点睛】此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤3、(1)480人,10辆45座客车;(2)租8辆45座客2辆60座客车车费用4900【分析】(1)本题中的等量关系为:4545座客车辆数+30=游客总数,60(60座客车辆数-2)=游客总数,据此可列方程组求出第一小题的解; (2)设租用45座客车辆,60座客车辆,依题意得,再讨论出符合条件的整数解,然后

18、根据价格计算出费用即可得到答案【详解】解:解:(1)设这批游客的人数是x人,原计划租用45座客车y辆 根据题意,得 , 解这个方程组,得 答:这批游客的人数480人,原计划租45座客车10辆; (2)设租辆45座,辆60座,则 整理得: 当时,则全部租45座客车:4804511(辆),所以需租11辆,租金为(元), 当时,则全部租60座客车:8(辆),所以需租8辆,租金为(元),当时,则租车费用为:(元),当时,则租车费用为:(元), 所以租45座的客车8辆,租2辆60座的客车,租车费用最低.【点睛】本题考查的是二元一次方程组的应用,二元一次方程的正整数解问题,掌握利用二元一次方程(组)解决问

19、题是解本题的关键.4、(1)8;(2)见解析;(3)10461,11451,12441【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示,根据要求列代数式得=,说明括号中的数为整式即可;(3)设五位“两头蛇数”为(),先求出16的真因数之和15,找到16的亲和数为 ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为,可得能被33整除,根据,且,得出能被33整除得出即可【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2),=,=,又因为,的整数,为整数, 一个四位“两头蛇数”与它去掉两头后得到的

20、两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为(),末位数为1,不能被2(真因数)整除,16的真因数之和,16的亲和数为 ,能被33整除,能被33整除,又2不能被33整除,能被33整除,且,或. 或(舍去),或或,所以五位“两头蛇数”为10461,11451,12441【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键5、(1);(2)【分析】(1)利用加减消元法解二元一次方程组即可;(2)利用加减消元法解二元一次方程组即可【详解】解:(1)用 2+得,解得,把代入得,解得,方程组的解为:;(2)用 2+3得,解得,把代入得,解得,方程组的解为:【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁