《2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系定向测评试卷(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪教版七年级数学第二学期第十五章平面直角坐标系定向测评试卷(精选).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十五章平面直角坐标系定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小
2、红家的( )A正东方向B正西方向C正南方向D正北方向2、在平面直角坐标系中,点(2,5)关于x轴对称的点的坐标是()A(2,5)B(2,5)C(2,5)D(2,5)3、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则ab的值是( )A2B-2C4D-44、已知A(3,2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则xy的值是( )A1B0C1D25、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A2B2C3D36、点M(3,2)关于y轴的对称点的坐标为( )A(3,2)B(3,2)C(3,2)D(1
3、,2)7、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A(-4,-3)B(4,3)C(4,-3)D(-4,3)8、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A(4,2)B(4,2)C(4,2)D(2,4)9、点A的坐标为,则点A在( )A第一象限B第二象限C第三象限D第四象限10、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A(2,3)或(2,3)B(2,3)C(3,2)或(3,2)D(3,2)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、线段CD是由线段AB平移得到的,点的对
4、应点为,则点的对应点D的坐标是_2、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是_3、在平面直角坐标系中,点A(m,5)和点B(2,n)关于x轴对称,则m+n=_4、已知点A(a,1)与点B(3,b)关于x轴对称,则ab_5、已知点A(1,3)和B(1,3),则点A,B关于_对称三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2)(1)画出ABC关于y轴对称的图形A1B1C1;(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;(3)请计算出的面积2、
5、如图,在平面直角坐标系中,ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4)(1)画出ABC关于x轴对称的A1B1C1,A、B、C的对应点分别为A1,B1,C1;(2)画出ABC绕原点O逆时针方向旋转90得到的A2B2C2,A、B、C的对应点分别为A2,B2,C2连接B2C2,并直接写出线段B2C2的长度3、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为请你帮她画出平面直角坐标系,并写出其他各景点的坐标4、已知点,解答下列各题(1)点P在x
6、轴上,求出点P的坐标;(2)点Q的坐标为=,直线轴;求出点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值5、如图,在平面直角坐标系中,AOCO6,AC交y轴于点B,BAO30,CO的垂直平分线过点B交x轴于点E(1)求AE的长;(2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;(3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得2,若存在,
7、请求出t值;若不存在,请说明理由6、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点A的坐标为(1,-4)(1)A1B1C1是ABC关于y轴的对称图形,则点A的对称点A1的坐标是_,并在图中画出A1B1C1(2)将ABC绕原点逆时针旋转90得到A2B2C2,则A点的对应点A2的坐标是_,并在图中画出A2B2C2 7、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,(1)求的度数;(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动
8、的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、,且四边形的面积为25,求的长8、已知点P(3a15,2a)(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标9、如图,在平面直角坐标系中有一个ABC,顶点A(1,3),B(2,0),C(3,1)(1)画出ABC关于y轴的对称图形A1B1C1(不写画法);点A关于x轴对称的点坐标为_;点B关于y轴对称的点坐标为_;(2)若网格上的每个小正
9、方形的边长为1,则ABC的面积是_10、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标-参考答案-一、单选题1、B【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可【详解】
10、解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答2、A【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),据此即可求得点A(2,5)关于x轴对称的点的坐标【详解】解:点(2,5)关于x轴对称,对称的点的坐标是(2,5)故选:A【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P的坐标是(x,-y)3、A【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案【详解】解:依题意可得a=-1,b=3ab=2故
11、选A【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键4、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y【详解】A(3,2),B(1,0)平移后的对应点C(5,x),D(y,0),平移方法为向右平移2个单位,x2,y3,x+y1,故选:C【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加5、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原点对称的两点坐标关系,
12、掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键6、A【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答【详解】解:点(3,2)关于y轴的对称点的坐标是(-3,2)故选:A【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数7、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标【详解】解: A(-4,3) ,关于y轴对称点B的坐标为(4,3)故答案为:B【点睛】本题主要是考查了y轴
13、对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键8、A【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B(4,2)在第二象限,故本选项符合题意;C(4,2)在第三象限,故本选项符合题意;D(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键平面直角坐标系中各象限点的坐标特点:第一象限的点:横坐标0,纵坐标0;第二象限的点:横坐标0;
14、第三象限的点:横坐标0,纵坐标0,纵坐标09、A【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限【详解】解:由题意,点A的坐标为,点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)10、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可【详解】解:点P在y轴左侧,点P在第二象限或第三象限,点P到x轴的距离是3,到y轴距离是2,点P的坐标是(2,3)或(2,3),故选:A【点睛】此题考查了平面直角坐标系中点的坐标表示,点到
15、坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离二、填空题1、【分析】点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为,而 , 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.2、(2,4)【分析】根据点(x,y)关于y轴对称的点的坐标为(x, y)进行解答即可【详解】解:点A(2,4)关于y轴对称的点B的坐标是(2,4),故答案为:(2,4)【点睛】本题考查关于y轴对称的点的
16、坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键3、3【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得答案【详解】解:点A(m,5)与点B(2,n)关于x轴对称,m=-2,n=5,m+n=3,故答案是:3【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握关于x轴的点的坐标特点4、2【分析】根据两点关于x轴对称得到a3,b1,代入计算即可【详解】解:点A(a,1)与点B(3,b)关于x轴对称,a3,b1,ab2故答案为:2【点睛】此题考查了轴对称的性质关于x轴对称:关于x轴对称的两点的横坐标相等,纵坐标互为相反数,熟记性质是解题关键5、x轴【
17、分析】根据点坐标关于轴对称的变换规律即可得【详解】解:点坐标关于轴对称的变换规律:横坐标相同,纵坐标互为相反数点A(1,3)和B(1,3),的横坐标相同,纵坐标互为相反数,点关于轴对称,故答案为:轴【点睛】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键三、解答题1、(1)见解析;(2)(-a,b);(3)2【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;(2)根据(1)中规律即可得出答案;(3)用割补法可求ABC的面积【详解】解:(1)A1B1C1如图所示:(2)D点的坐标为(a,b),D1点的坐标为(-a,b);(3)【点睛】本题考查作图-轴
18、对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积关于y轴对称点的性质:纵坐标相同,横坐标互为相反数2、(1)作图见解析;(2)作图见解析,【分析】(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案【详解】(1)关于轴对称的如图所作,,,;(2)绕原点逆时针方向旋转得到的如图所示,由旋转的性质得:【点睛】本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键3、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【分析】先利用东北虎的坐标找
19、到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标4、(1);(2);(3)【分析】(1)利用x轴上P点的纵坐标为0求解即可得;(2)利用平行于y轴的直线上的点的横坐标相等列方程求解即可;(3)在第二象限,且到x轴、y轴的距离相等的点的横纵坐标互为相反数,再利用相反数的性质列方程求解可得,将其代入代数式求解即可(1)解
20、:点P在x轴上,P点的纵坐标为0,解得:,(2)解:直线轴,解得:,(3)解:点P在第二象限,且它到x轴、y轴的距离相等,解得:,的值为2020【点睛】本题主要考查平面直角坐标系内点的坐标特点分别考查了坐标轴上点的坐标特点、平行于坐标轴的直线上点坐标的特点、到坐标轴距离相等的点的坐标特点,理解题意,熟练掌握坐标系中不同条件下的坐标特点是解题关键5、(1)12;(2);(3)当或时,使得【分析】(1)由OA=OC=6,BAO=30,得到OAC=OCA=30,则COE=OAC+OCA=60,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则COE是等边三角形,由此即可得到答案;(2)分三种情
21、况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;(3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可【详解】解:(1)OA=OC=6,BAO=30,OAC=OCA=30,COE=OAC+OCA=60,BE是线段OC的垂直平分线平分线,OE=CE,COE是等边三角形,OE=OC=AO=6,AE=AO+OE=12;(2)如图1所示,过点C作CKx轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),BE是线段OC的垂直平分线,CEP=OEP,PNOE,NPE=OEP,CGN=COE=
22、60,CNG=CEO=60,NPE=NEP,CGN是等边三角形,NP=NE=t,NG=CN=CE-NE=6-t,PG=d=NG-NP=6-t-t=6-2t,当直线PN刚好经过H点时,此时CH=CN=3,即当t=3时,直线PN经过H点,当直线PN在H点下方或经过H点时,d=6-2t(0t3);如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),同理可证NP=NE=t,NG=CN=CE-CN=6-t,PG=d=NP-NG=t-(6-t)=2t-6(3t6);如图3所示,当直线PN在C点上方时同理可证NP=NE=t,NG=CN=EN-CE=t-6,PG=d=NP+NG=t+t-6=2t-6
23、(t6),综上所述, ;(3)如图3-1所示,当N在CE上时,过点N作NRx轴交OC于R,同(2)可证CRN是等边三角形,RN=CN=CR,M、N运动的速度相同,AM=NE,又AO=EC,MO=NR,NRMO,RNK=OMK,NRK=MOK,MOKNRK(ASA),OK=RK,OM=RN,即,解得;如图3-2所示,当C在EC的延长线上时,同理可证,解得,综上所述,当或时,使得【点睛】本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解6、(1)图见解析,A1(-1,-4);
24、(2)图见解析,A2(4,1)【分析】(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点A、B、C绕点逆时针旋转90的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可【详解】解:(1)如图所示,A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,A2B2C2即为所求作的三角形,点A2(4,1)故答案为:(4,1)【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴7、(1);(2);(
25、3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,则,证明,进而可得,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)当点在轴正半轴时,如图, ,当点在原点时,都在轴上,不能构成三角形,则时,不存在当点在轴负半轴时,如图, , ,综上所述:(3)如图,过点作,连接,设,则, 是等腰直角三角形在和中,是等腰直角三角形中,又【点睛】本题考查了非负数的性
26、质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键8、(1)或;(2)或;(3)或【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案【详解】解:(1)点到轴的距离是1,且,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,解得,点的横、纵坐标都是整数,或,当时,则点的坐标为,当时,则点的坐标为
27、,综上,点的坐标为或【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键9、(1)图见解析,(1,3),(2,0);(2)9【分析】(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;(2)由题意利用ABC所在矩形面积减去周围三角形面积进行计算进而得出答案【详解】解:(1)如图,A1B1C1即为所作,点A关于x轴对称的点坐标为 (1,3);点B关于y轴对称的点坐标为:(2,0);故答案为:(1,3),(2,0);(2)ABC的面积是:452433159故答案为:9【点睛】本题
28、主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键10、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)【分析】(1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可【详解】解:(1)如图所示,即为所求;(2)如图所示,PQM即为所求;P是D(-3,0)横坐标减2,纵坐标加3得到的,点P的坐标为(-5,3)【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点