精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理定向测评练习题(含详解).docx

上传人:可****阿 文档编号:32546858 上传时间:2022-08-09 格式:DOCX 页数:27 大小:789.85KB
返回 下载 相关 举报
精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理定向测评练习题(含详解).docx_第1页
第1页 / 共27页
精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理定向测评练习题(含详解).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理定向测评练习题(含详解).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理定向测评练习题(含详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十七章-勾股定理定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,“赵爽弦图”是吴国的赵爽创制的以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加

2、上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中,则阴影部分的面积是( )A169B25C49D642、如图,高速公路上有两点A,B相距25km,C,D为两个乡镇,已知DA10km,CB15km,DAAB于点A,CBAB于点B,现需要在AB上建一个高速收费站E,使得C,D两个乡镇到E站的距离相等,则BE的长为( )A10kmB15kmC20kmD25km3、下列条件:;,能判定是直角三角形的有( )A4个B3个C2个D1个4、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m后,下端刚好接触到地面,则学校旗杆的高度为( )AmB

3、mCmDm5、在棱长为1的正方体中,顶点A,B的位置如图所示,则A、B两点间的距离为( )A1BCD6、如图是由4个全等的直角三角形与1个小正方形拼成的正方形图案已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(ab),则下列说法:a2+b2=25,ab=1,ab=12,a+b=7正确的是()ABCD7、下列四组数中,是勾股数的是( )A5,12,13B,C1,D7,24,268、如图,在RtABC中,CBA60,斜边AB10,分别以ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5()A50

4、B50C100D1009、有下列四个命题是真命题的个数有( )个垂直于同一条直线的两条直线互相垂直;有一个角为的等腰三角形是等边三角形;三边长为,3的三角形为直角三角形;顶角和底边对应相等的两个等腰三角形全等A1B2C3D410、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( )A4、6、8B3、4、5C5、12、13D1、3、第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在每个小正方形的边长为1的网格中,点,均落在格点上()的大小为_(度);()请在如图所示的网格中,用无刻度的直尺,画一条直线把这个六边形分成面积相等的两部分,并简要说明画法(不

5、要求证明)_2、如图,在中,A是直角,AB=3,AC=3,则BC的长为_3、在直角坐标平面内,已知点A(1,2),点B(3,1),则线段AB的长度等于 _4、在ABC中,ABAC12,A30,点E是AB中点,点D在AC上,DE3,将ADE沿着DE翻折,点A的对应点是点F,直线EF与AC交于点G,那么DGF的面积_5、如图,在ABC中,ABC97.5,P、Q两点在AC边上,PB2,BQ3,PQ,若点M、N分别在边AB、BC上,(1)_(2)当四边形PQNM的周长最小时,(MP+MN+NQ)2=_三、解答题(5小题,每小题10分,共计50分)1、我边防战士在海拔高度(即CD的长)为50米的小岛顶部

6、D处执行任务,上午8时发现在海面上的A处有一艘船,此时测得该船的俯角为30,该船沿着AC方向航行一段时间后到达B处,又测得该船的俯角为45,求该船在这一段时间内的航程(计算结果保留根号)2、在RtABC中,A90,已知AC2,AB1,BCx,求代数式(x1)2+2x的值3、在ABC中,AB、BC、AC三边的长分别为、,求这个三角形的面积小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示这样不需求ABC的高,而借用网格就能计算出它的面积这种方法叫做构图法(1)ABC的面积为:;(2)若DEF三边的长分

7、别为、,请在图1的正方形网格中画出相应的DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且PQR、BCR、DEQ、AFP的面积相等,求六边形花坛ABCDEF的面积4、如图,在矩形ABCD中,AD10,AB6E为BC上一点,ED平分AEC,求:点A到DE的距离5、如图,已知ABC是等边三角形,BD是AC上的高线作AEAB于点A,交BD的延长线于点E取BE的中点M,连结AM(1)求证:AEM是等边三角形;(2)若AE1,求ABC的面积-参考答案-一、单选题1、C【分析】先利用勾股定理求出,再利用大

8、正方形的面积减去四个全等直角三角形的面积即可得【详解】解:,则阴影部分的面积是,故选:C【点睛】本题考查了勾股定理、全等三角形的性质,熟练掌握勾股定理是解题关键2、A【分析】根据题意设出的长为,再由勾股定理列出方程求解即可【详解】解:设,则,由勾股定理得:在中,在中,由题意可知:,解得:,BE=10km故选A【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键3、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论【详解】解:即,ABC是直角三角形,故符合题意;A+B+C=180,C=AB,A+B+AB=180,即A=90,ABC是直角三角形,故符合题意;,

9、设a=,b=,c=,则,ABC不是直角三角形,故不合题意;,C=180=75,故不是直角三角形;故不合题意综上,符合题意的有,共2个,故选:C【点睛】本题主要考查了直角三角形的判定方法如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形4、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高【详解】解:根据题意画出图形如下所示:则BC8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在RtABC中,AB2+BC2AC2,即x2+82(x+2)2,

10、解得x15,故AB15m,即旗杆的高为15m故选:C【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图5、C【分析】根据RtABC和勾股定理可得出AB两点间的距离【详解】解:在RtABC中,AC1,BC,可得:AB,故选:C【点睛】本题考查了勾股定理,得出正方体上A、B两点间的距离为直角三角形的斜边是解题关键6、D【分析】由大的正方形的边长为结合勾股定理可判断,由小的正方形的边长为 结合小正方形的面积可判断,再利用 结合可判断,再由可判断,从而可得答案.【详解

11、】解:由题意得:大正方形的边长为 故符合题意;用a、b表示直角三角形的两直角边(ab),则小正方形的边长为: 则(负值不合题意舍去)故符合题意; 而 故符合题意; (负值不合题意舍去)故符合题意;故选D【点睛】本题考查的是以勾股定理为背景的几何面积问题,同时考查了完全平方公式的应用,熟练的应用完全平方公式的变形求值是解本题的关键.7、A【分析】根据勾股数的定义:有、三个正整数,满足,称为勾股数由此判定即可【详解】解:、,是勾股数,符合题意;、,不是勾股数,不符合题意;、,不是整数,不是勾股数,不符合题意;、,不是勾股数,不符合题意故选:【点睛】本题考查了勾股数,熟练掌握勾股数的定义是解题的关键

12、8、B【分析】根据题意过D作DNBF于N,连接DI,进而结合全等三角形的判定与性质得出S1+S2+S3+S4+S5RtABC的面积4进行分析计算即可.【详解】解:在RtABC中,CBA60,斜边AB10,BCAB5,AC5,过D作DNBF于N,连接DI,在ACB和BND中,ACBBND(AAS),同理,RtMNDRtOCB,MDOB,DMNBOC,EMDO,DNBCCI,DNCI,四边形DNCI是平行四边形,NCI90,四边形DNCI是矩形,DIC90,D、I、H三点共线,FDIO90,EMFDMNBOCDOI,FMEDOI(AAS),图中S2SRtDOI,SBOCSMND,S2+S4SRtA

13、BCS3SABC,在RtAGE和RtABC中,RtAGERtACB(HL),同理,RtDNBRtBHD,S1+S2+S3+S4+S5S1+S3+(S2+S4)+S5RtABC的面积+RtABC的面积+RtABC的面积+RtABC的面积RtABC的面积4552450故选:B【点睛】本题考查勾股定理的应用和全等三角形的判定,解题的关键是将勾股定理和正方形的面积公式进行灵活的结合和应用9、C【分析】根据等边三角形的判定定理、勾股定理逆定理、全等三角形的判定判断即可【详解】:在同一平面内,垂直于同一条直线的两条直线互相垂直,故错误;:有一个角为的等腰三角形是等边三角形,故正确;:,边长为,3的三角形为

14、直角三角形,故正确;:顶角相等则等腰三角形三个角都对应相等,再加上底边对应相等,这两个等腰三角形全等,故正确;综上是真命题的有3个;故选:C【点睛】本题考查命题的真假,结合等边三角形的判定、勾股定理逆定理、全等三角形的判定等知识综合判断是解题的关键10、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形如果没有这种关系,这个就不是直角三角形【详解】解:A、42+6282,不符合勾股定理的逆定理,故本选项符合题意;B、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D

15、、12+32=,符合勾股定理的逆定理,故本选项符合题意故选:A【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断二、填空题1、90 连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l 【分析】(1)运用勾股定理求出AF,AB,BF的长,再运用勾股定理逆定理判断出是直角三角形即可得出结论;(2)连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l,则可得结论【详解】解:(1)连接BF,如图,由勾股得, 是直角三角形 故答案为:90;(2)连接AE与B

16、F交于点O,连接BD,CE交于点P,过点O,P作直线l,如图,则直线l即为所求【点睛】本题主要考查了应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图2、【分析】根据勾股定理可直接进行求解【详解】解:在中,A是直角,AB=3,AC=3,;故答案为【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键3、5【分析】根据两点间的距离公式得到AB即可【详解】解:根据题意得AB5故答案为:5【点睛】本题考查了勾股定理和两点间的距离公式,关键是根据两点间的距离公式解答4、6或6+9【分析】分两种情况:如图1,当点D在H点上方时,过点E作EHAC交A

17、C于点E,过点G作GQAB交AB于点Q,如图2,当点D在H点下方时,过点E作EHAC交AC于点E,过点G作GQAB交AB于点Q,先求出三角形AEG的AE边上的高GQ和三角形ADE的AD边上的高,根据SDGF2SAEDSAEG可分别求出答案【详解】解:如图1,当点D在H点上方时,过点E作EHAC交AC于点E,过点G作GQAB交AB于点Q,AB12,点E是AB的中点,AEAB6,EHAC,AHE90,A30,AE6,AH3,DE3,DH3,DHEH,ADAHDH33,EDH45,AEDEDHA15,由折叠的性质可知,DEFAED15,AEG2AED30,AEGA,AGGE,GQAE,AQAE3,A

18、30,GQAG,GQ2+32(2GQ)2,GQSAEDSFED,SDGF2SAEDSAEG,SDGF2369如图2,当点D在H点下方时,过点E作EHAC交AC于点E,过点G作GQAB交AB于点Q,AB12,点E是AB的中点,AEAB6,EHAC,AHE90,同理求得DHEH,AH3,AD3+3,DEH45,AED90A+DEH105,由折叠的性质可得出DEFAED105,AEG2AED18030,AEGA,AGGE,同求出GQ,SDGF2SAEDSAEG,SDGF26+9故答案为:6或6+9【点睛】本题考查了折叠的性质,等腰三角形的性质,直角三角形的性质,勾股定理,等腰直角三角形的性质,熟练掌

19、握折叠的性质是解题的关键5、45【分析】作点关于的对称点,点关于的对称点,连接交于,交于,此时四边形的周长最小,过点作于,由勾股定理求出,得出,再求出,过点作于,在中,则,在中,由勾股定理得,即可得出结果【详解】解:(1)如图,作点关于的对称点,点关于的对称点,连接交于,交于,此时四边形的周长最小,过点作于,解得:,(2),过点作于,在中,在中,【点睛】本题考查轴对称最短问题、勾股定理、含角的直角三角形的性质、轴对称的性质等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,由直角三角形解决问题三、解答题1、米【分析】先求出A=EDA=30,DBC=EDB=45,C=90,即可得

20、到AD=2CD=100米,BDC=45,然后分别求出AC,BC的长,即可求得AB的长【详解】解:如图所示,由题意得:EDA=30,EDB=45,ACED,CDAC,CD=50米,A=EDA=30,DBC=EDB=45,C=90,AD=2CD=100米,BDC=45,米,BDC=DBC=45,BC=CD=50米,米,该船在这一段时间内的航程为米【点睛】本题主要考查了勾股定理和含30度角的直角三角形的性质,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解2、6【分析】AC是直角边,根据勾股定理得出x的值,进而代入解答即可【详解】解:在RtABC中,AC2,BC1,ABx,(x1)2+2xx

21、22x+1+2xx2+15+16;代数式(x1)2+2x的值是6【点睛】本题考查了勾股定理,代数式求值,解题的关键是掌握勾股定理求出x的值3、(1)3.5;(2)见解析,3;(3)62【分析】(1)根据网格特点,由长方形的面积减去长方形内除所求三角形以外三个三角形面积即可求解;(2)根据三边的长度,利用勾股定理在网格中画出相应的三角形,利用(1)中方法求解面积即可;(3)先利用正方形的面积求出PR、RQ、PQ,根据构图法求出PQR的面积,将七个图形面积加起来即可求得该六边形的面积【详解】解:(1)根据网格,SABC=33212313=913=3.5,故答案为:3.5;(2),利用构图法画出相应

22、的DEF,如图所示,SDEF=24212214=8122=3;(3)正方形PRBA,RQDC,QPFE的面积分别为13,10,17,PR=,RQ=,QP=,构造PQR,如图所示,SPQR=34312314=1232=,PQR、BCR、DEQ、AFP的面积相等,该六边形的面积为13+10+17+4=62【点睛】本题考查网格作图、勾股定理、二次根式的应用、正方形的面积公式、三角形的面积公式、长方形的面积公式,理解构图法的原理,借助网格法和割补法求解图形面积是解答的关键4、3【分析】根据平行线的性质以及角平分线的定义证明ADEAED,根据等角对等边,即可求得AE的长,在直角ABE中,利用勾股定理求得

23、BE的长【详解】解:在矩形ABCD中,ADBC,ADBC10,ABCD6BC90,ADECED,ED平分AEC,AEDCED,AEDADE,ADAE10,在RtABE中,根据勾股定理,得BE8,ECBCBE1082,在RtDCE中,根据勾股定理,得DE2,设点A到DE的距离为h,则ADCDDEh,h3答:点A到DE的距离为3【点睛】本题考查勾股定理的综合应用,熟练掌握平行线的性质、角平分线的定义三角形面积公式及勾股定理是解题关键5、(1)见解析;(2)【分析】(1)利用条件可求得E60且利用直角三角形的性质可得出MEAM,可判定AEM的形状;(2)由条件利用勾股定理可求得AB和BD的长,可求出ABC的面积【详解】解:(1)ABC是等边三角形,BD是AC边上的高线,AEAB,ABD30,E60,点M是BE的中点,在RtABE中,AMBEEM,AEM是等边三角形;(2)AE1,EAB90,ABD30BE2AE2,由勾股定理得:AB, ABACBC,ADAB,BD,SABC【点睛】本题主要考查等边三角形的判定和性质、勾股定理以及直角三角形中,30所对的边是斜边的一半,掌握等边三角形的性质和判定是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁