《2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解专题测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解专题测试试卷(含答案详解).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列从左边到右边的变形中,是因式分解的是( )ABCD2、下列从左到右的变形,是因式分解的是( )A(x4)(x
2、4)x216Bx2x6(x3)(x2)Cx21x(x)Da2bab2ab(ab)3、下列各组多项式中,没有公因式的是()Aaxby和by2axyB3x9xy和6y22yCx2y2和xyDa+b和a22ab+b24、下列多项式能使用平方差公式进行因式分解的是( )ABCD5、已知abc为ABC的三条边边长,且满足等式a22b2c22ab2bc0,则ABC的形状为( )A等腰三角形B等边三角形C直角三角形D钝角三角形6、下列因式分解正确的是( )ABCD7、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A若a100,则bc0B若a100,则bc1C若bc,则a+bc
3、D若a100,则abc8、下列等式中,从左到右的变形是因式分解的是( )ABCD9、下列等式中,从左到右的变形是因式分解的是( )ABCD10、下列各式从左到右的变形中,是因式分解的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、分解因式:mx24mx4m_3、因式分解_4、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为_5、将4a28ab+4b2因式分解后的结果为_三、解答题(5小题,每小题10分,共计50分)1、
4、分解因式(1) (2)(3)2、(1)20032-19992001(公式法) (2)16(a-b)2-9(a+b)2 (分解因式)3、因式分解:4、先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法如:x22x3x22x14(x1)222(x12)(x12)(x3)(x1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x26x7;(2)分解因式:a24ab5b25、我们知道,任意一个正整数c都可以进行这样的分解:c=ab(b是正
5、整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称ab是c的最优分解并规定:M(c)=,例如9可以分解成19,33,因为9-13-3,所以33是9的最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值-参考答案-一、单选题1、A【分析】根据因式分解的定义逐个判断即可【详解】解:A是因式分解,故本选项符合题意;B等式的左边不是多项式
6、,所以不是因式分解,故本选项不合题意; C等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解2、D【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分
7、解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键3、D【分析】直接利用公因式的确定方法:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案【详解】解:A、by2axyy(axby),故两多项式的公因式为:axby,故此选项不合题意;B、3x9xy3x(13y)和6y22y2y(13y),故两多项式的公因式为:13y,故此选项不合题意;C、x2y2(xy)(xy)和xy,故两多项式的公因式为:xy,故此选项不合题意;D、ab和
8、a22abb2(ab)2,故两多项式没有公因式,故此选项符合题意;故选:D【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键4、B【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解【详解】解:A、,不能进行因式分解,不符合题意;B、m2+11m2(1+m)(1m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键平方差公式:a2b2(a+b)(ab)5、B【分析】首先利用分组分解法对已知等
9、式的左边进行因式分解,再根据三角形的三边关系得到,从而得到答案【详解】解:a22b2c22ab2bc0;为等边三角形故选B【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,以及灵活利用因式分解建立与方程之间的关系来解决问题6、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是
10、解本题的关键7、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键8、C【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是整式乘法,不是因式分解,故D错误【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的
11、关键9、D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得【详解】解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;B、是整式的乘法运算,不是因式分解,则此项不符题意;C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;故选:D【点睛】本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键10、D【分析】因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解
12、,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;不是化为整式的积的形式,故B不符合题意;不是化为整式的积的形式,故C不符合题意;是因式分解,故D符合题意;故选D【点睛】本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.二、填空题1、【分析】先提取公因式,再利用完全平方公式进行因式分解【详解】解:,故答案是:【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式2、m(x2)2【分析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式=m(x2-4x+4)=m(x-2)2,故答案为:【点睛】本题考查了提公因式法与公式法的
13、综合运用,熟练掌握因式分解的方法是解本题的关键3、【分析】先提公因式再根据平方差公式因式分解即可【详解】解:故答案为:【点睛】本题考查了提公因式和公式法因式分解,掌握因式分解的方法是解题的关键4、【分析】根据题意可知a、b是相互独立的,在因式分解中b决定常数项,a决定一次项的系数,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值,代入原多项式进行因式分解【详解】解:分解因式x2+ax+b时,甲看错了b,分解结果为,在x2+6x+8中,a6是正确的,分解因式x2+ax+b时,乙看错了a,分解结果为,在x2+10x+9中,b9是正确的,x2+ax+bx2+6x+9故答案为:【点睛】本题
14、考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键5、【分析】先提取公因式4,再利用完全平方式即可求出结果【详解】故答案为:【点睛】本题考查因式分解掌握提公因式和公式法进行因式分解是解答本题的关键三、解答题1、(1);(2);(3)【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式先利用完全平方公式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即可【详解】解:(1)a;(2);(3)【点睛】本题考查的是因式分解,掌握提公因式与公式法,分组分解法分解因式是解题的关键2、(1)12010;(2)(7a-b)(a-7b)【分析】(1)运用完全平方公式和平
15、方差公式进行计算即可;(2)直接运用平方差公式进行计算即可【详解】解:(1)20032-19992001=(2000+3)2-(2000-1)(2000+1) =20002+220003+9-(20002-12) =20002+220003+9-20002+12 =12010 (2)16(a-b)2-9(a+b)2= = = =【点睛】本题主要考查了分解因式,熟练掌握因式分解的方法是解答本题的关键3、【分析】直接提取公因式xy,再利用完全平方公式分解因式得出答案【详解】解:【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键4、(1)(x+1)(x7);(2
16、)(a+5b)( ab)【分析】(1)仿照例题方法分解因式即可;(2)仿照例题方法分解因式即可;【详解】解:(1)x26x7= x26x+916=(x3)242=(x3+4)(x34)=(x+1)(x7);(2)a24ab5b2= a24ab+4b29b2=(a+2b)2(3b)2=(a+2b +3b)(a+2b3b)=(a+5b)( ab)【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,理解题中的分解因式方法并能灵活运用是解答的关键5、(1);1;(2);【分析】(1)根据c=ab中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称ab是c的最优分解,因此M(8)=,
17、M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,x,y都是自然数,且1xy9,满足条件的“吉祥数”有15、24、33M(15)=,M(24)=,M(33)=,所有“吉祥数”中M(d)的最大值为【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键