《2022年最新强化训练北师大版七年级数学下册第五章生活中的轴对称课时练习练习题.docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版七年级数学下册第五章生活中的轴对称课时练习练习题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形不是轴对称图形的是( )ABCD2、如图,ABC与ABC关于直线MN对称,BB交MN于点O,则下列结论不一
2、定正确的是()AACACBBOBOCAAMNDABBC3、下列图案,是轴对称图形的为()ABCD4、下列图形是四家电信公司的标志,其中是轴对称图形的是()ABCD5、如图,正方形网格中, A,B两点均在直线a上方,要在直线a上求一点P,使PAPB的值最小,则点P应选在( )AC点BD点CE点DF点6、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是( )ABCD7、在一些美术字中,有的汉字是轴对称图形下面4个汉字中,可以看作是轴对称图形的是()A吉B祥C如D意8、下列图形为轴对称图形的是( )ABCD9、下列图形中不是轴对称图形的是( )ABCD10、下面所给的银行标志图中是轴对称图
3、形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、成轴对称的两个图形的主要性质是:(1)成轴对称的两个图形是_(2)如果两个图形关于某条直线对称,那么对称轴是任何一对_的垂直平分线2、如图,在33的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有_种3、如图的三角形纸片中,AB8,BC6,AC5,沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,折痕为BD,则AED的周长_4、如图,直角三角形纸片的两直角边分别为6和8,现将ABC折叠,使点A与点B重合,折痕为DE,则
4、CBE的周长是_5、如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的一点,写请出一个正确的结论_三、解答题(5小题,每小题10分,共计50分)1、如图1,在RtABC中,ABC90,ABBC,D为BC边上一点,连接AD,将ABD沿AB翻折得到ABE,过点E作AD的垂线,垂足为F,延长EF交AC于G(1)求证:EAEG;(2)连接DG如图2,当DGAC时,试判断BD与CD的数量关系,并说明理由;若AB5,EDG的面积为4,请直接写出CDG的面积2、(1)在图中画出与ABC关于直线l成轴对称的A1B1C1;(2)ABC的面积为 ;(3)在直线l上找一点P(在答题纸的图中标出点P),使PB
5、+PC的长最短3、如图,在33的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的ABC为格点三角形,在图中画出格点ABC与ABC成轴对称,且点A,B,C的对称点分别为点A,B,C例如,图1、图2中的格点ABC与ABC成轴对称,请你在图3、图4、图5、图6中各画出一种格点ABC,使各图中的ABC与ABC对称形式不同4、综合与应用:根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数:点A表示_,点B表示_(2)观察数轴,与点A的距离为4的点表示的数是_和_(3)若将数轴折叠,使得点A与表示的点重合,则点B与数_表示的点重
6、合(4)若数轴上M,N两点之间的距离为2020(点M在点N的左侧),且M,N两点经过(3)中的折叠后互相重合,则M、N两点表示的数分别是什么?5、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在ABC中,ABAC(如图),怎样证明CB呢?(分析)把AC沿A的角平分线AD翻折,因为ABAC,所以点C落在AB上的点C处,即ACAC,据以上操作,易证明ACDACD,所以ACDC,又因为ACDB,所以CB(感悟与应用)(1)如图(1),在ABC中,ACB90,B30,CD平分ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分DAB,
7、CDCB求证:BD180-参考答案-一、单选题1、B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】选项A、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:B【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置2、D【分析】根据轴对称的性质解答【详解】解:ABC与ABC关于直线MN对称,BB交MN于点O,ACAC,BOBO,AAMN,但ABBC不正确,故选
8、:D【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键3、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:A不是轴对称图形,故本选项不符合题意;B不是轴对称图形,故本选项不符合题意;C不是轴对称图形,故本选项不符合题意D是轴对称图形,故本选项符合题意;故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、C【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选
9、项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C【点睛】本题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形5、C【分析】取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求【详解】解:如图所示,取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求,故选C【点睛】本题主要考查了轴对称最短路径问题,解题的关键在于能够熟练掌握轴对称最短路径的相关知识6、C【分析】将一个图形沿着一条直线翻折后,两侧能够完全重合的图形是轴对称图形,根据定义判断即可.【详解】A、是轴对称图形;B、是轴对
10、称图形;C、不是轴对称图形;D、是轴对称图形,故选:C.【点睛】此题考查轴对称图形的定义,正确理解图形的特点是解题的关键.7、A【分析】根据轴对称的定义去判断即可【详解】吉是轴对称图形,A符合题意;祥不是轴对称图形,B不符合题意;如不是轴对称图形,C不符合题意;意不是轴对称图形,D不符合题意;故选A【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的定义即一个图形沿着某条直线折叠,直线两旁的图形能完全重合,是解题的关键8、A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:选项B、C、D不能找到这样的一条直线,使
11、图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置9、C【分析】根据称轴的定义进行分析即可【详解】解:A是轴对称图形,故本选项不符合题意;B是轴对称图形,故本选项不符合题意;C不是轴对称图形,故本选项符合题意;D是轴对称图形,故本选项不符合题意;故选:C【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、B【分析】根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁
12、的部分能够完全重合的图形,逐项分析判断即可【详解】解:A.不是轴对称图形,故该选项不正确,不符合题意;B.是轴对称图形,故该选项正确,符合题意;C. 不是轴对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题1、全等的 对应点所连线段 【分析】根据轴对称的性质:成轴对称的两个图形全等,如果两个图形成轴对称,那么对称轴是对应点的垂直平分线,进行求解即可【详解】解:(1)成轴对称的两个图形是全等的;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点
13、所连线段的垂直平分线故答案为:全等的,对应点所连线段【点睛】本题主要考查了轴对称图形的性质,解题的关键在于能够熟练掌握相关知识进行求解2、5【分析】直接利用轴对称图形的性质分析得出答案【详解】解:如图所示:所标数字之处都可以构成轴对称图形故答案为:5【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键3、7【分析】根据折叠的性质,可得BE=BC=6,CD=DE,从而AE=AB-BE=2,再由AED的周长AD+DE+AE,即可求解【详解】解:沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,BE=BC=6,CD=DE,AB8,AE=AB-BE=2,AED的周长A
14、D+DE+AE=AD+CD+AE=AC+DE=5+2=7故答案为:7【点睛】本题主要考查了折叠的性质,熟练掌握折叠前后对应线段相等,对应角相等是解题的关键4、14【分析】根据图形翻折变换的性质得出AEBE,进而可得出CBE的周长ACBC【详解】解:BDE是ADE翻折而成,AEBE,CBE的周长BCBECEBCAECEBCAC,角三角形纸片的两直角边长分别为6和8,CBE的周长是14故答案为:14【点睛】本题考查的是图形翻折变换的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键5、AP=BP (答案不唯一)【分析】根
15、据轴对称图形的性质,即可求解【详解】解:直线MN是四边形AMBN的对称轴,AP=BP故答案为:AP=BP (答案不唯一)【点睛】本题主要考查了轴对称图形的性质,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段相等,对应角相等是解题的关键三、解答题1、(1)见解析;(2)BD=;4【分析】(1)证明BAE=DEG,根据等腰直角三角形的性质得到BAC+BAE=ACB+DEG,即可推出结论;(2)过点G作GNBC于N,证明ABEENG,推出GN=BE=BD,根据等腰直角三角形三线合一的性质推出ND=NC=,由此得到结论BD=;由知EB=BD=DN=NC,得到ED=DC,根据三角形
16、面积公式计算即可【详解】(1)证明:由折叠得BAE=BAD,AED=ADE,EGAD,AFE=ABC=ABE90,AED+BAE=ADE+DEG90,BAE=DEG,在RtABC中,ABC90,ABBC,BAC=ACB,BAC+BAE=ACB+DEG,即EAC=EGA,EAEG;(2)过点G作GNBC于N,则ENG=ABE90,AE=AD,AE=EG,AE=EG,BAE=NEG,ABEENG,GN=BE,DGAC,BAC=ACB=45,NGAC,ND=NC=,BE=BD,BD=;由知EB=BD=DN=NC,ED=DC,EDG的面积=4,CDG的面积=【点睛】此题考查全等三角形的判定及性质,折叠
17、的性质,解题的关键是正确掌握全等三角形的判定定理并熟练应用2、(1)作图见解析;(2);(3)作图见解析【分析】(1)分别确定关于的对称点 再顺次连接即可;(2)利用长方形的面积减去周围三个三角形的面积即可得到答案;(3)由关于对称,连接 交于点 从而可得答案.【详解】解:(1)如图,是所求作的三角形,(2) 故答案为: (3)如图,点即为所求作的点,【点睛】本题考查的是轴对称的作图,利用轴对称确定两条线段的和最小,利用割补法求解图形的面积,掌握“轴对称的性质”是解题的关键.3、见解析【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解【详解】解:如图,ABC即为所求【点睛
18、】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴4、(1)1,-2.5;(2)3,5;(3)0.5;(4)M表示的数为-1011;N表示的数为1009【分析】(1)根据数轴的性质读数,即可得到答案;(2)根据数轴和绝对值的性质计算,即可得到答案;(3)根据数轴的性质计算,即可得到答案;(4)根据数轴和绝对值的性质,结合题意,通过列方程并求解,即可得到答案【详解】解:(1)根据数轴性质,读数得:A:1;B:-2.5,故答案是:1,-2.5;(2)假设与点A的距离为4的数为:x或或即与点A的距离为4的点表示的数是:5或-3,故答案是
19、:5或-3,(3)A点与-3表示的点重合,且A点与-3距离为4A点与-3之间的中心点为:-1数轴以-1为中心折叠折叠后重合的点到点-1的距离相等又B点到-1点的距离为: 设和B点重合的点为:x或(即B点舍去)B点与0.5表示的点重合,故答案是:0.5;(4)假设M点表示的数为:x,N点表示的数为:y数轴上M、N两点之间的距离为2020(M在N的左侧),且M、N两点经过(3)中折叠后互相重合M、N两点到点-1距离为1010假设距离点-1的距离为1010的点为:x 或或M在N的左侧M:-1011;N:1009,故答案是:-1011,1009【点睛】本题考查了绝对值、数轴、一元一次方程的知识;解题的
20、关键是熟练掌握绝对值、数轴、一元一次方程的性质,从而完成求解5、(1)AC+AD=BC;(2)证明见解答过程;【分析】(1)把AC沿ACB的角平分线CD翻折,点A落在BC上的点A处,连接AD,根据直角三角形的性质求出A,根据三角形的外角性质得到ADB=B,根据等腰三角形的判定定理得到AD=AB,结合图形计算,证明结论;(2)将AD沿AC翻折,使D落在AB上的D处,连接CD,根据全等三角形的性质得到CD=CD=BC,D=ADC,进而证明结论;【详解】(1)解:AC+AD=BC,理由如下:如图,把AC沿ACB的角平分线CD翻折,点A落在BC上的点A处,连接AD,ACB=90,B=30,A=90-B=60,由折叠的性质可知,CA=CA,AD=AD,CAD=A=60,B=30,ADB=CAD-B=30,ADB=B,AD=AB,AD=AB,BC=CA+AB=AC+AD;(2)证明:如图,将AD沿AC翻折,使D落在AB上的D处,连接CD,则ADCADC,CD=CD=BC,D=ADC,B=BDC,BDC+ADC=180,B+D=180【点睛】本题考查的是翻折变换的性质、等腰三角形的性质,掌握翻折变换的性质是解题的关键