《2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题攻克试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题攻克试卷(无超纲).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第三章 圆专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD2、下列叙述正确的有
2、( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形A0B1C2D33、如图,已知AB是O的直径,CD是弦,若BCD36,则ABD等于()A54B56C64D664、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD25、如图,BD是O的切线,BCE30,则D()A40B50C60D306、如图,是正方形的外接圆,若的半径为4,则正方形的边
3、长为( )A4B8CD7、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m8、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmBcmCcmDcm9、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是
4、( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦10、直角三角形PAB一条边为AB,另一顶点P在直线l上,下面是三个学生做直角三角形的过程以及自认为正确的最终结论:甲:过点A作l的垂线,垂足为P1;过点B作l的垂线,垂足为P2;作AP3BP3故符合题意的点P有三处;乙:以AB为直径作圆O,O与交l于两点P1、P2,故符合题意的点P有两处;丙:过点A作P1AAB,垂足为A,交l于点P1;过点B作P2BAB,垂足为B,交l于点P2故符合题意的点P有两处下列说法正确的是() A甲的作法和结论均正确B乙、丙的作法和结论合在一起才正确C甲、乙、
5、丙的作法和结论合在一起才正确D丙的作法和结论均正确第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用一个半径为2的半圆作一个圆锥的侧面,这个圆锥的底面圆的半径为_2、如图,半径为2的扇形AOB的圆心角为120,点C是弧AB的中点,点D、E是半径OA、OB上的动点,且满足DCE60,则图中阴影部分面积等于_3、如图,AB为的直径,弦CDAB于点H,若AB=10,CD=8,则OH的长为_ 4、在ABC中,已知ABC90,BAC30,BC1,如图所示,将ABC绕点A按逆时针方向旋转90后得到ABC则图中阴影部分的面积为_5、已知O的直径为6cm,且点P在O上,则线段PO=_
6、.三、解答题(5小题,每小题10分,共计50分)1、(1)请画出ABC绕点B逆时针旋转90后的A1BC1(2)求出(1)中C点旋转到C1点所经过的路径长(结果保留根号和)2、如图,内接于O,且为O的直径,交于点,在的延长线上取点,使得DCEB(1)求证:是O的切线;(2)若,求AE的长3、如图,AB为O的直径,弦于,连接,过作,交O于点,连接DF,过作,交DF的延长线于点(1)求证:BG是O的切线;(2)若,DF=4,求FG的长4、如图,ABC内接于O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PFCF(1)求证:CF是O的切线
7、;(2)连接AP与O相交于点G,若ABC2PAC,求证:ABBP;(3)在(2)的条件下,若AC4,BC3,求CF的长5、如图1,抛物线yax22ax+b(a0)与x轴交于A、B两点(A点在B点的左边),与y轴的正半轴交于点C,顶点为D,OBOC3OA(1)求抛物线解析式;(2)如图2,点E的坐标为(0,7),若过点E作一条直线与抛物线在对称轴右侧有且只有一个交点H,直线ykx2k5(k0)与抛物线交于F、G两点,求当k为何值时,FGH面积最小,并求出面积的最小值;(3)如图3,已知直线l:y2x1,将抛物线沿直线l方向平移,平移过程中抛物线与直线l相交于E、F两点设平移过程中抛物线的顶点的横
8、坐标为m,在x轴上存在唯一的一点P,使EPF90,求m的值-参考答案-一、单选题1、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC
9、=360-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键2、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解【详解】当或
10、者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;圆的直径所对的圆周角为直角斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;以为三边长度的三角形,是直角三角形,故(5)错误;故选:D【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解3、A【分析】根据圆周角定理得到ADB90,ABCD36,然后利用互余计算
11、ABD的度数【详解】AB是O的直径,ADB90,DABBCD36,ABDADBDAB,即ABD90DAB903654故选:A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径4、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解
12、题的关键5、D【分析】连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得【详解】解:连接 BD是O的切线故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键6、D【分析】连接OB,OC,过点O作OEBC于点E,由等腰直角三角形的性质可知OE=BE,由垂径定理可知BC=2BE,故可得出结论【详解】解:连接OB,OC,过点O作OEBC于点E,OB=OC,BOC=90,OBE=45, OE=BE,OE2+BE2=OB2,BC=2BE=,即正方形ABCD的边长是故选:D【点睛
13、】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键7、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键8、C【分析
14、】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键9、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.10、B【分析】根据三个学生的作法作出图形即可判断【详解】解:甲的作图如下,不是直角三角形,故甲的不正确乙:如图,根据直径所对的圆周
15、角是直角可知,乙的作法正确,但不完整,丙的作法如下,丙的作法也正确,但不完整,乙、丙的作法和结论合在一起才正确故选B【点睛】本题考查了直角三角形的判定,直径所对的圆周角是直角,根据题意作出图形是解题的关键二、填空题1、1【分析】先求出扇形的弧长,然后根据扇形的弧长等于圆锥底面圆的周长,设圆锥的底面圆的半径为r,列出方程求解即可得【详解】解:半径为2的半圆的弧长为:,围成的圆锥的底面圆的周长为2设圆锥的底面圆的半径为r,则:,解得:,故答案为:1【点睛】题目主要考查圆锥与扇形之间的关系,一元一次方程的应用,熟练掌握圆锥与扇形之间的关系是解题关键2、【分析】如图,连接 过作于 是等边三角形,求解
16、证明 再证明 可得,再计算即可得到答案.【详解】解:如图,连接 过作于 是的中点, 是等边三角形, 而 故答案为:【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,扇形面积的计算,掌握“利用转化的思想求解阴影部分的面积”是解本题的关键.3、3【分析】根据垂径定理可得,进而利用勾股定理解直角三角形即可求得的长【详解】解: AB为的直径,弦CDAB于点H,若AB=10,CD=8,在中,故答案为:3【点睛】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键4、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案【详解】解:由旋转得,=BAC30,ABC90,BAC3
17、0,BC1,AC=2BC=2,AB=, 阴影部分的面积=,故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键5、3cm【分析】根据点与圆的位置关系得出:点P在O上,则即可得出答案【详解】O的直径为6cm,O的半径为3cm,点P在O上,故答案为:3cm【点睛】本题考查点与圆的位置关系:点P在O外,则,点P在O上,则,点P在O内,则三、解答题1、(1)见解析;(2)【分析】(1)由题意分别作出点A、C绕点B逆时针旋转90后得到的对应点,再与点B首尾顺次连接即可;(2)由题意可知C点旋转到C1点所经过的路
18、径为圆弧,进而根据弧长公式求解即可【详解】解:(1)如图所示,A1BC1即为所求(2)BC2,CBC190,C点旋转到C1点所经过的路径长为【点睛】本题主要考查作图-轴对称变换和旋转变换,解题的关键是根据轴对称变换和旋转变换得到变换后的对应点及弧长公式2、(1)证明见详解;(2)【分析】(1)连接OC,由等腰三角形的性质得出DCE=DEC,A=ACO,可得出DCE+ACO=90,则可得出结论(2)过点D作DFCE于点F,由勾股定理求出AB=5,证明AOEACB,得出比例线段,即可求出AE【详解】(1)证明:连接OC,如图1,DC=DE,DCE=DEC,DEC=AEO,DCE=AEO,OAOE,
19、A+AEO=90,DCE+A=90,OA=OC,A=ACO,DCE+ACO=90,OCDC,CD是O的切线;(2)如图2,过点D作DFCE于点F,AB为O的直径,ACB=90,ACB=AOE,AC=2,AB=,又A=A,AOEACB,【点睛】本题考查了等腰三角形的性质和判定,相似三角形的判定与性质,三角形内角和定理,切线的判定,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键3、(1)见解析;(2)【分析】(1)由题意根据切线的判定证明半径OBBG即可BG是O的切线;(2)根据题意连接CF,根据圆周角定理和中位线性质得出,进而依据等边三角形和四边形BEDG是矩形进行分析即可得出FG的
20、长【详解】解:(1)证明: C,A,D,F在O上,CAF=90, D=CAF=90 ABCE,BGDF, BED=G=90 四边形BEDG中,ABG=90 半径OBBG BG是O的切线(2)连接CF, CAF=90, CF是O的直径 OC=OF 直径ABCD于E, CE=DE OE是CDF的中位线 ,AFD=30, ACD=AFD=30 OA=OC, AOC是等边三角形 CEAB, E为AO中点, OA=2OE=4,OB=4 BED=D=G=90, 四边形BEDG是矩形 DG=BE=6 【点睛】本题考查圆的综合问题,熟练掌握切线的判定和圆周角定理和中位线性质以及等边三角形和矩形性质是解题的关键
21、.4、(1)证明见解析;(2)证明见解析;(3)【分析】(1)连接,由题意知,;可得,进而说明是的切线(2)连接,同弧所对圆周角相等,有,进而说明(3)勾股定理知,有,知,;在中用勾股定理求出的长,求出的长,通过角度关系得出,故有,进而求出的值【详解】解:(1)证明:如图所示,连接,为半径是的内接三角形,且是直径在和中,有又即是半径是的切线(2)证明:如图连接为直径(3)在中在和中,设,在中,有,解得,【点睛】本题考查了切线、圆周角、三角形全等、等腰三角形、勾股定理等知识解题的关键与难点在于角度等量关系的转化5、(1)y-x2+2x+3;(2)k=-2,面积最小为;(3)m=或【分析】(1)令
22、x=0,解得y=b,求出OBOCb,OA=,得到A(-,0),C(0,b),B(b,0),把A(-,0),B(b,0)代入yax22ax+b即可求解;(2)设直线EH的解析式为y=nx+7,联立,得,根据直线EH与函数只有一个交点,求出H(2,3),再得到直线GH过定点M(2,-5),利用SFGH=SFMH+SGMH=4,求出的最小值即可求解;(3)当以EF为直径的与x轴相切时,x轴上存在点P即切点,使EPF=90,设点E,F的坐标分别为F(x1,y1)、F(x2,y2),求出平移后的抛物线的解析式为y-(x-m)2+2m+2,联立得到,求出x1+x2=2m+2,x1x2=,y1+y2=4m-
23、6,表示出点R(m-1,2m-3),求出2,利用PR=,得到EF2=4PR2,列出关于m的方程即可求解【详解】(1)yax22ax+b(a0)与x轴交于A、B两点(A点在B点的左边),与y轴的正半轴交于点C,令x=0,解得y=bCO=bOBOCb,OA=A(-,0),C(0,b),B(b,0)把A(-,0),B(b,0)代入yax22ax+b得,解得抛物线解析式为y-x2+2x+3;(2)点E的坐标为(0,7),可设直线EH的解析式为y=nx+7联立,得直线EH与函数只有一个交点,且在对称轴右侧=解得n1=-2,n2=6(舍去)直线EH的解析式为y=-2x+7解方程得x1=x2=2H(2,3)
24、直线GH解析式ykx2k5=k(x-2)-5直线GH过定点M(2,-5)如图,连接HMH(2,3)HMx轴,MH=8设F(x2,y2)、G(x1,y1)联立,得到x1+x2=2-k,x1x2=-2k-8SFGH=SFMH+SGMH=4故当最小时,SFGH最小2=故当k=-2时,2的最小值为32故的最小值为此时SFGH最小为4=;(3)当以EF为直径的与x轴相切时,x轴上存在点P即切点,使EPF=90如图,与x轴相切时,切点为点P,y-x2+2x+3=-(x-1)2+4设点E,F的坐标分别为F(x1,y1)、F(x2,y2),当平移后的抛物线的顶点的横坐标为m时,则抛物线向右平移了m-1个单位,故相应地纵坐标向上平移了2(m-1)=个单位,则平移后的抛物线的解析式为y-(x-m)2+4+2(m-1)=-(x-m)2+2m+2联立得到x1+x2=2m+2,x1x2=y1+y2=2(x1+x2)-2=4m-6,则点R(m-1,2m-3),2=(2m+2)2-4()=16,PR=则EF2=4PR2EF2=2+2=52=516=4PR2PR=2m-3516=4(2m-3)2解得m=当m=或m=符合题意【点睛】此题主要考查二次函数综合运用,解题的关键是熟知圆的切线的性质、勾股定理、二次函数的图像与性质、一元二次方程相关性质