《2021-2022学年京改版八年级数学下册第十六章一元二次方程定向测评试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十六章一元二次方程定向测评试卷(含答案解析).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月
2、营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )ABCD2、已知是一元二次方程的一个根,则代数式的值为( )A2020B2021C2022D20233、把方程化成(a,b为常数)的形式,a,b的值分别是( )A2,7B2,5C,7D,54、已知m,n是一元二次方程的两个实数根,则的值为( )A4B3CD5、已知关于x的一元二次方程:x22xm0有两个不相等的实数根x1,x2,则( )Ax1x20Bx1x20Cx1x21Dx1x216、一元二次方程2x2 - 1 = 6x化成一般形式后,常数项是 - 1,一次项系数是( )A- 2B- 6C2D67、
3、若关于x的一元二次方程ax2+x10有实数根,则a的取值范围是()Aa且a0BaCaDa且a08、一元二次方程的一个根为,那么c的值为( )A9B3CD9、下列一元二次方程两实数根和为-4的是( )ABCD10、若x1是关于x的一元二次方程ax2+bx20(a0)的一个根,则20212a+2b的值等于()A2015B2017C2019D2022第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,设该厂四、五月份的月平均增长率为x,则可列方程为_2、若,则关于的一元二次方程必有一个根
4、为_3、关于x的一元二次方程kx23x10有实数根,则k的取值范围是_4、如图,一块长5m、宽4m的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的设配色条纹的宽度为xm,根据题意,列方程为 _5、已知关于x的一元二次方程kx24x20有两个不相等的实数根,则k的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、已知,如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(9,3)(1)求直线l1,l2的表达式;(2)点C为直线OB上一动点(点C不与点O,B重合)
5、,作CDy轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF设点C的纵坐标为n,求点D的坐标(用含n的代数式表示);若矩形CDEF的面积为48,请直接写出此时点C的坐标2、解方程:3、已知关于x的方程x2 - 5x + m = 0(1)若方程有一根为 - 1,求m的值;(2)若方程无实数根,求m的取值范围4、(1)解一元二次方程:x26x+9(52x)2;(2)求证:无论m取何值时,方程(x3)(x2)m20总有两个不相等的实数根5、解一元二次方程:(1) (2)-参考答案-一、单选题1、C【分析】根据等量关系第10月的营业额(1+x)2=第12月的营业额列方程
6、即可【详解】解:根据题意,得:,故选:C【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键2、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可【详解】解:把代入一元二次方程得,故选:B【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键3、C【分析】利用配方法将一元二次方程进行化简变形即可得【详解】解:,故选:C【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键4、A【分析】根据方程的系数结合根与系数的关系,即可得出m+n的值,此题得解【详解】解:m、n是一元二次方程的
7、两个实数根,m+n=4故选:A【点睛】本题考查了根与系数的关系,牢记两根之和等于-是解题的关键5、D【分析】利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案【详解】解:由题意可知:两根之和:,故A错误,x22xm0有两个不相等的实数根,解得:, 由根与系数的关系可知:,只有D选项正确,故选:D【点睛】本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键6、B【分析】先把一元二次方程化为一般形式,即可得出一次项系数【详解】一元二次方
8、程化为一般形式,一次项系数是故选:B【点睛】本题考查一元二次方程的相关概念,一元二次方程一般形式:,其中为二次项系数,为一次项系数,为常数项7、A【分析】根据一元二次方程的定义和一元二次方程根的判别式求解即可【详解】解:关于x的一元二次方程ax2+x10有实数根,解得:且故选A【点睛】本题主要考查一元二次方程根的判别式和一元二次方程的定义,熟练掌握根的判别式和一元二次方程的定义是解题的关键8、D【分析】把x=-3代入方程,然后解关于c的方程即可【详解】解:把x=-3代入方程得9+c=0,所以c=-9故选D【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程
9、的解9、D【分析】根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可【详解】解:A. ,不符合题意;B. ,该方程无实根,不符合题意;C. ,该方程无实根,不符合题意;D. ,该方程有实根,且,符合题意;故选D【点睛】本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键10、B【分析】根据一元二次方程根的定义将代入方程ax2+bx20可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解【详解】解:将代入方
10、程ax2+bx20可得,即20212a+2b=故选B【点睛】本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键二、填空题1、【分析】该厂四、五月份的月平均增长率为x,根据增长率公式即可得出五月份的产量是,据此列方程即可【详解】该厂四、五月份的月平均增长率为x,五月份的产量是,故答案为:【点睛】本题考查一元二次方程的应用,解题的关键是正确列出一元二次方程原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到,再经过第二次调整就是,增长用“+”,下降用“”2、【分析】由ab+c=0可得b=a+c,然后将b=a+c带入方程,最后用因式分解法解一元二次方程即可【详解】解
11、:ab+c=0,b=a+c,把代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,x1=1,x2=(非零实数a、b、c)故答案是:-1【点睛】本题主要考查了解一元二次方程,灵活运用因式分解法解一元二次方程成为解答本题的关键3、且【详解】利用判别式,根据一元二次方程的定义,列出不等式即可解决问题;【分析】解:关于x的一元二次方程kx23x10有实数根,0且k0,94k0,k,且k0,故答案为k且k0【点睛】本题考查根的判别式,一元二次方程ax2bxc0(a0)的根与b24ac有如下关系:当0时,方
12、程有两个不相等的两个实数根;当0时,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立4、2x2-9x+4=0【分析】设条纹的宽度为x米,根据“配色条纹所占面积=整个地毯面积的”的等量关系列出方程并整理即可【详解】解:设条纹的宽度为x米依题意得:2x5+2x44x2=54整理得:2x2-9x+4=0故填2x2-9x+4=0【点睛】本题主要考查了列一元二次方程,审清题意、找到等量关系成为解答本题的关键5、k-2且k0k0且k-2【分析】根据关于x的一元二次方程kx2-4x-2=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围注意:二次项系数不等于零【详解】解:关
13、于x的一元二次方程kx2-4x-2=0有两个不相等的实数根,=(-4)2-4(-2)k0,解得k-2,k0,k的取值范围k-2且k0,故答案是:k-2且k0【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根三、解答题1、(1)yx,yx+12;(2)(3n,3n+12);(3,1)或C(12,4)【分析】(1)从图中看以看出l1是正比例函数,l2是一次函数,根据点A、B的坐标,用待定系数法即可求得l1、l2的解析式;(2)已知点C的纵坐标及点C在直线l1上,求得点C的横坐标;进而知道
14、了点D的横坐标,点D在直线l2上,易得点D的坐标;根据点C与点D坐标,求出CF|3n|,CD|3n+12n|4n+12|,利用矩形的面积长宽,列出关于n的方程,解方程即可【详解】解:(1)设直线l1的表达式为yk1x,过点B(9,3),9k13,解得:k1,直线l1的表达式为yx;设直线l2的表达式为yk2x+b,过点A (0,12),B(9,3),解得:,直线l2的表达式yx+12;(2)点C在直线l1上,且点C的纵坐标为n,nx,解得:x3n,点C的坐标为(3n,n),CDy轴,点D的横坐标为3n,点D在直线l2上,y3n+12,D(3n,3n+12);C(3n,n),D(3n,3n+12
15、),CF|3n|,CD|3n+12n|4n+12|,矩形CDEF的面积为60,S矩形CDEFCFCD|3n|4n+12|48,解得n1或n4,当n1时,3n3,故C(3,1),当n4时,3n112,故C(12,4)综上所述,点C的坐标为:(3,1)或C(12,4)【点睛】本题考查待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程,掌握待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程是解题关键2、x1=-4,x2=-2【分析】根据因式分解法即可求解【详解】x+4=0或x+2=0解得x1=-4,x2=-2【点睛】本题主要考查解一元二次方程,解题的关键是掌握因式
16、分解法解方程3、(1)m的值为(2)【分析】(1)将代入原方程,即可求出m的值(2)令根的判别式,即可求出m的取值范围【详解】(1)解:方程有一根为 - 1,是该方程的根,解得:,故m的值为(2)解:方程无实数根,解得:【点睛】本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键4、(1);(2)见详解【分析】(1)首先利用完全平方公式以及平方差公式分解因式,进而解方程得出即可;(2)首先表示出,得出符号进而求出即可【详解】(1)解:,则,整理得:,解得:;(2)证明:把化为一般形式:, ,故无论m为何值,4m2+1永远大于0,则方程总有两个不相等的实数根【点睛】此题主要考查了因式分解法解一元二次方程以及根的判别式,正确分解因式是解题关键5、(1),;(2),【分析】(1)根据直接开平方法解一元二次方程;(2)根据公式法解一元二次方程先确定;再求,然后代入公式即可【详解】解:(1)开方得:,解得:,;(2),【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键