2021-2022学年浙教版初中数学七年级下册第四章因式分解专项训练试题(含详细解析).docx

上传人:可****阿 文档编号:32544517 上传时间:2022-08-09 格式:DOCX 页数:20 大小:253.76KB
返回 下载 相关 举报
2021-2022学年浙教版初中数学七年级下册第四章因式分解专项训练试题(含详细解析).docx_第1页
第1页 / 共20页
2021-2022学年浙教版初中数学七年级下册第四章因式分解专项训练试题(含详细解析).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2021-2022学年浙教版初中数学七年级下册第四章因式分解专项训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解专项训练试题(含详细解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解专项训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、多项式的各项的公因式是( )A.B.C.D.2、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.73、下列式子的变形是因式分解的是( )A.B.C.D.4、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)5、下列各式中从左到右的变形,是因式分解的是( )A.B.C.D.6、多项式可以因式

2、分解成,则的值是( )A.-1B.1C.-5D.57、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)8、已知mn2,则m2n24n的值为()A.3B.4C.5D.69、下列因式分解正确的是( )A.3ab26ab3a(b22b)B.x(ab)y(ba)(ab)(xy)C.a2+2ab4b2(a2b)2D.a2+a(2a1)210、若,则的值为( )A.2B.3C.4D.611、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.12、已知,则代数式的值为( )A.B.1C.D.213、下列多项式因式分解正确的是

3、( )A.B.C.D.14、下列各式由左边到右边的变形,是因式分解的是( )A.B.C.D.15、下列各式从左到右的变形是因式分解为( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、小明将(2020x+2021)2展开后得到a1x2+b1x+c1;小红将(2021x2020)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1c2的值是_2、若,则_3、已知,则的值等于_4、分解因式:xy3x+y3_5、已知x+y2,xy4,则x2y+xy2_6、若,且,则_7、分解因式:3x2y12xy2_8、已知,则的值为_9、因式分解:_10、由多项式与多项式相乘的法则可

4、知:即:(ab)(a2abb2)a3a2bab2a2bab2b3a3b3即:(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方和公式同理,(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方差公式请利用公式分解因式:64x3y3_三、解答题(3小题,每小题5分,共计15分)1、分解因式:(x2+1)24x(x2+1)+4x22、分解因式:(1)(2)3、因式分解:(1)x316x;(2)2x3y+4x2y22xy3-参考答案-一、单选题1、A【分析】公因式的定义:一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.由公因式的定义求解.【详解】解:这三个单

5、项式的数字最大公因数是1,三项含有字母是a,b,其中a的最低次幂是a2,b的最低次幂是b,所以多项式的公因式是.故选A.【点睛】本题主要考查了公因式,关键是掌握确定多项式中各项的公因式,可概括为三“定”:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.2、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1),a是整数,a(a+1)一定是两个连续的整数相乘,a(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【

6、点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.3、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.4、D【分析】根据因式分解的定义对各选项进行

7、逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5、B【分析】把一个多项式化为几个整式的

8、积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.6、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的

9、关键.7、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.8、B【分析】先根据平方差公式,原式可化为,再把已知代入可得,再应用整式的加减法则进行计算可得,代入计算即可得出答案.【详解】解:=把代入上式,原式=,把代入上式,原式=22=4.故选:B.【点睛】本题考查了运用平方差公式进行因式分解,解题的关键是熟练掌握平方差公式.9、D【分析】根据因式分解的定义及方法即可得出答案.【详解】A:根据

10、因式分解的定义,每个因式要分解彻底,由3ab26ab3a(b22b)中因式b22b分解不彻底,故A不符合题意.B:将x(ab)y(ba)变形为x(ab)+y(ab),再提取公因式,得x(ab)y(ba)x(ab)+y(ab)(ab)(x+y),故B不符合题意.C:形如a22ab+b2是完全平方式,a2+2ab4b2不是完全平方式,也没有公因式,不可进行因式分解,故C不符合题意.D:先将变形为,再运用公式法进行分解,得,故D符合题意.故答案选择D.【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式.10、C【分析】把变形为,代入a+b=2后,再变形为2(a+b

11、)即可求得最后结果.【详解】解:a+b=2,a2-b2+4b=(a-b)(a+b)+4b,=2(a-b)+4b,=2a-2b+4b,=2(a+b),=22,=4.故选:C.【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.11、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项A正确; B. 是多项式乘法,故选项B不正确;C. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征

12、是解题关键.12、D【分析】由已知等式可得,将变形,再代入逐步计算.【详解】解:,=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.13、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.14、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法

13、,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.15、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:

14、把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.二、填空题1、4041【分析】根据(2020x+2021)2=(2020x)2+220212020x+20212得到c120212,同理可得 c220202,所以c1-c2=20212-20202,进而得出结论.【详解】解:(2020x+2021)2=(2020x)2+220212020x+20212, c1=20212, (2021x-2020)2=(2021x)2-220202021x+20202, c2=20202, c1-c2=20212-20202=(2021+2020)(2021-2020)=4041, 故答案为

15、:4041.【点睛】本题主要考查了完全平方公式,平方差公式,解决本题的关键是要熟悉公式的结构特点.2、3【分析】利用因式分解求出的值,再代入中即可.【详解】解:,取或,将的值,再代入中,故答案是:.【点睛】本题考查了因式分解,解题的关键是利用十字交叉相乘法进行因式分解,求出.3、-36【分析】将所求代数式先提取公因式xy,再利用完全平方公式分解因式,得出,然后整体代入x+y,xy的值计算即可.【详解】解:=,=-36,故答案为:-36.【点睛】本题考查了因式分解方法的应用,代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.4、(y3)(x+1)【分析】直接利用分组分解法、提取公因式

16、法分解因式得出答案.【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.5、-8【分析】先提出公因式,进行因式分解,再代入,即可求解.【详解】解:x+y2,xy4,.故答案为: .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并会根据多项式的特征选用合适的方法是解题的关键.6、5【分析】将m2-n2按平方差公式展开,再将m-n的值整体代入,即可求出m+n的值.【详解】解:,.故答案为:5.【点睛】本题主要考查平方差公式,解题的

17、关键是熟知平方差公式的逆用.7、【分析】根据提公因式法因式分解即可.【详解】3x2y12xy2故答案为:【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.8、-4【分析】由ab8,得到a8b,代入ab160,得到(b4)20,根据非负数的性质得到结论.【详解】解:ab8,a8b,ab160,(8b)b16b28b16(b4)20,(b4)20,b4,a4,a2b42(4)4,故答案为:4.【点睛】本题考查了配方法的应用,非负数的性质,正确的理解题意是解题的关键.9、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为:.【点睛】本题考查了分组分解法,公式法分解因式

18、,掌握因式分解的方法是解题的关键.10、【分析】根据题意根据立方差公式因式分解即可.【详解】64x3y3故答案为:【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.三、解答题1、.【分析】根据完全平方公式因式分解,整理顺序后,再用完全平方公式因式分解,最后利用幂的乘方得到因式分解的结果.【详解】解:(x2+1)24x(x2+1)+4x2,=(x2+1)22(x2+1)2x +(2x)2,=,=,=,=.【点睛】本题考查因式分解,幂的乘方运算,掌握因式分解的各种方法,准确记住因式分解公式和公式特征是解题关键.2、(1);(2)【分析】(1)直接利用完全平方和公式进行因式分解;(2)提取公因式后,再利用平方差公式进行因式分解.【详解】解:(1)(2).【点睛】本题考查了因式分解,解题的关键是根据具体内容选择合适的公式进行因式分解.3、(1)x(x+4)(x4);(2)2xy(xy)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式x(x216)x(x+4)(x4);(2)原式2xy(x22xy+y2)2xy(xy)2.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁