2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数章节测评试题(含详细解析).docx

上传人:可****阿 文档编号:32542143 上传时间:2022-08-09 格式:DOCX 页数:22 大小:323.45KB
返回 下载 相关 举报
2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数章节测评试题(含详细解析).docx_第1页
第1页 / 共22页
2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数章节测评试题(含详细解析).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数章节测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数章节测评试题(含详细解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版(上海)七年级数学第二学期第十二章实数章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A2B27的立方根是3C9的平方根是3D9的平方根是32、下列等式正确的是( )A

2、BCD3、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )ABCD4、下列各数是无理数的是( )AB3.33CD5、估算的值是在( )之间A5和6B6和7C7和8D8和96、在实数中,无理数的个数是( )A1B2C3D47、已知2m1和5m是a的平方根,a是( )A9B81C9或81D28、如果一个正数a的两个不同平方根是2x2和63x,则这个正数a的值为( )A4B6C12D369、下列运算正确的是( )ABCD10、若,则整数a的值不可能为( )A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个“数值转换

3、机”的示意图,若输入的x的值为2,输出的值为,则输入的y值为 _2、若的平方根是4,则a_3、若|2y+1|=0,则xy2的值是_4、的整数部分是_5、比较大小:_3(填“”、“”或“”)三、解答题(10小题,每小题5分,共计50分)1、(1)计算:()(1)2021+;(2)求x的值:(3x+2)312、阅读材料,回答问题下框中是小马同学的作业,老师看了后,找来小马问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小马点点头老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答”请把实数|,4,2表示在数轴上,并比较它们的大小(用号连接)解:请你帮小马同学将

4、上面的作业做完3、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(ab)满足a2+b257,ab12,求a+b的值4、(1)计算: ;(2)求的值: 5、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?6、先化简:,再从中选取一个合适的整数代入求值7、如图1,依次连接22方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为(1)图1中阴影正方

5、形的边长为 ;点P表示的实数为 ;(2)如图2,在44方格中阴影正方形的边长为a写出边长a的值请仿照(1)中的作图在数轴上表示实数a+18、如图是一个无理数筛选器的工作流程图(1)当x为16时,y值为_;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个9、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起(1)用xcm表示图中空白部分的面积;(2)当x5cm

6、时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?10、已知a,b互为相反数,c,d互为倒数,x的立方等于8,求3(a+b)+cd+x的值-参考答案-一、单选题1、D【分析】根据平方根、立方根和算术平方根的性质计算即可;【详解】2,故A错误;27的立方根是3,故B错误;9的平方根是3,故C错误;9的平方根是3,故D正确;故选D【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键2、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无

7、意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)3、C【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答【详解】解:数轴上表示1,的对应点分别为A,B,AB1,点B关于点A的对称点为C,ACAB点C的坐标为:

8、1(1)2故选:C【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数知道两点间的距离,求较小的数,就用较大的数减去两点间的距离4、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键5、C【分析】根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故【详解】故选:C【点睛】本题考查了算术平方根估计范围,将先看作进行比较,再加

9、上3是解题的关键6、B【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:=2,=2,,无理数只有,共2个故选:B【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001,等有这样规律的数7、C【分析】分两种情况讨论求解:当2m1与5m是a的两个不同的平方根和当2m1与5m是a的同一个平方根【详解】解:若2m1与5m互为相反数,则2m1+5m0,m4,5m5(4)9,a9281,若2m15m,m2

10、,5m523,a329,故选C【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解8、D【分析】根据正数平方根有两个,它们是互为相反数,可列方程2x2+63x=0,解方程即可【详解】解:一个正数a的两个不同平方根是2x2和63x,2x2+63x=0,解得:x=4,2x2=24-2=8-2=6,正数a=62=36故选择D【点睛】本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键9、B【分析】根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合

11、题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B【点睛】本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键10、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可【详解】解:,即,即,又,整数a可能的值为:2,3,4,整数a的值不可能为5,故选:D【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法二、填空题1、-3【分析】利用程序图列出式子,根据等式的性质和立方根的意义即可求得y值【详解】解:由题意得:(2)2+y324+y323y327(3)327,y3故答案为:3【点睛】本题主要考查了根据程序框图列式计算,立方根

12、的性质,准确计算是解题的关键2、256【分析】根据平方根与算术平方根的定义即可求解【详解】解:的平方根是4,故答案为:256【点睛】此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则a是b的算术平方根3、【分析】先根据算术平方根和绝对值的非负性求出的值,再代入计算即可得【详解】解:,解得,则,故答案为:【点睛】本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键4、3【分析】先估算的近似值,然后进行计算即可【详解】解:,的整数部分是3,故答案为3【点睛】本题考查了估算无理数的大小,解题的

13、关键是熟练掌握求一个数的平方5、【分析】由得,再利用不等式的基本性质可得,从而可得答案【详解】解:,故答案为:【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键三、解答题1、(1);(2)【分析】(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;(2)利用立方根解方程即可得【详解】解:(1)原式;(2),【点睛】本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键2、图见解析,4|2【分析】根据和确定原点,根据数轴上的点左边小于右边的排序依次表示即可【详解】把实数|,2表示在数轴上如图所示,|2【点睛】本题考查用数轴比较点的大小,根

14、据题意先确定原点是解题的关键3、(1)或;(2)9【分析】(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:再把a2+b257,ab12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为 大正方形由两个小正方形与两个长方形组成, (2)由(1)得: a2+b257,ab12, 则 【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.4、(1)0;(2)【分析】(1)根据立方根和平方根的性质化简,再计算加法,即可求解;(

15、2)先将系数化为1,再利用平方根的性质,即可求解【详解】解:(1) 原式2+2; (2) 解得: 【点睛】本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键5、这个长方体的长、宽、高分别为、【分析】根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可【详解】解:设这个长方体的长、宽、高分别为4x、2x、x根据题意得:4x2x24,解得:x或x(舍去)则4x4,2x2所以这个长方体的长、宽、高分别为4cm、2cm、cm【点睛】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解

16、题的关键6、或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出a、b、y的值是解答的关键72x-2,2【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题【详解】解:原式=,x取整数,x可取2,当x=2时,原式=22-2=2【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法7、(1),1+;(2);见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)先利用大正方形的面积减去四个三角形的

17、面积可得阴影部分正方形的面积,再求其算术平方根即可得;由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为【详解】解:(1)正方形ABCD的面积为:,正方形ABCD的边长为:,由题意得:点表示的实数为:,故答案为:,;(2)阴影部分正方形面积为:,求其算术平方根可得:,如图所示:点表示的数即为【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键8、(1)(2)0,1(3)x0(4)x=3或x=9或x=81【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则

18、,进行逆运算即可求得无数个满足条件的数(1)解:当x=16时,则y=;故答案是:(2)解:当x=0,1时,始终输不出y值因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x0时,导致开平方运算无法进行;(4)解: x的值不唯一x=3或x=9或x=81【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键9、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可【详解】解:(1)空白部分面积为;(2)当x5时,空白部分面积为(3)根据题意得,解得x13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式10、-1【分析】由题意可知,将值代入即可【详解】解:由题意得:,;解得【点睛】本题考查了相反数,倒数,立方根等知识点解题的关键在于正确理解相反数,倒数,立方根的概念与应用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁