《2021-2022学年度强化训练北师大版七年级数学下册第五章生活中的轴对称专项测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版七年级数学下册第五章生活中的轴对称专项测评试题(含详解).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,=90,沿着过点B的一条直线BE折叠ABC,使点C恰好落在AB的中点D处,则的度数为( )A
2、30B45C60D752、下面四个图形是轴对称图形的是( )ABCD3、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是( )ABCD4、下列图形中不是轴对称图形的是( )ABCD5、下列垃圾分类的标识中,是轴对称图形的是( )ABCD6、如图点D,E分别在ABC的边BC,AB上,连接AD、DE,将ABC沿直线DE折叠后,点B与点A重合,已知AC6cm,ADC的周长为14cm,则线段BC的长为( )A6cmB8cmC12cmD20cm7、下列交通标志图案是轴对称图形的是( )ABCD8、下列图案中,有且只有三条对称轴的是( )ABCD9、现实世界中,对称现象无处不在,中国的方块字中有
3、些也具有对称性下列汉字是轴对称图形的是( )A喜B欢C数D学10、下列说法正确的是( )A轴对称图形是由两个图形组成的B等边三角形有三条对称轴C两个等面积的图形一定轴对称D直角三角形一定是轴对称图形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点M(3,a),N(a,b)关于x轴对称,则a+b=_2、如图,若P为AOB内一点,分别作出P点关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,P1P224,则PMN的周长是 _若MPN90,则P1PP2的度数为 _3、如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为EBD,那么下列说法:EBD是等腰
4、三角形,EBED;折叠后ABE和CBD一定相等;折叠后得到的图形是轴对称图形;EBA和EDC一定是全等三角形错误的是_(填序号)4、如图,长方形纸片ABCD中ADBC,ABCD,A90,将纸片沿EF折叠,使顶点C、D分别落在点C、D处,CE交AF于点G若CEF68,则么GFD_5、如图的三角形纸片中,AB8,BC6,AC5,沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,折痕为BD,则AED的周长_三、解答题(5小题,每小题10分,共计50分)1、如图所示的方格纸中,每个小方格的边长都是1,点A(4,1)、B(3,3)、C(1,2)(1)作ABC关于y轴对称的ABC;(2)在x轴上
5、找出点P,使PA+PC最小,在图中描出满足条件的P点(保留作图痕迹),并直接写出P点的坐标2、图1是一张三角形纸片ABC将BC对折使得点C与点B重合,如图2,折痕与BC的交点记为D(1)请在图2中画出ABC的BC边上的中线(2)若AB=11cm、AC=16cm,求ACD与ABD的周长差3、如图在77的正方形网格中,点A、B、C都在格点上,点D是AB与网格线的交点且AB5,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示(1)作AB边上高CE(2)画出点D关于AC的对称点F;(3)在AB上画点M,使BMBC;(4)在ABC内画点P,使SABPSACPSBCP4、如图,正三角形网格中,已知
6、两个小三角形被涂黑(1)再将图中1其余小三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的);(2)再将图中2其余小三角形涂黑两个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的)5、如图,在ABC中,ABAC,D是BC的中点,DEAB,DFAC,E,F为垂足求证:DEDF-参考答案-一、单选题1、A【分析】根据题意可知CBE=DBE,DEAB,点D为AB的中点,EAD=DBE,根据三角形内角和定理列出算式,计算得到答案【详解】解:由题意可知CBE=DBE,DEAB,点D为AB的中点,EA=EB,EAD=DBE,CBE=DBE=EAD,CBE+DBE+EAD=90,A=
7、30,故选:A【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于1802、B【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据此概念进行分析【详解】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合3、C【分析】将一个图形沿着一条直线翻折后,两侧能够完全重合的图
8、形是轴对称图形,根据定义判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形,故选:C.【点睛】此题考查轴对称图形的定义,正确理解图形的特点是解题的关键.4、C【分析】根据称轴的定义进行分析即可【详解】解:A是轴对称图形,故本选项不符合题意;B是轴对称图形,故本选项不符合题意;C不是轴对称图形,故本选项符合题意;D是轴对称图形,故本选项不符合题意;故选:C【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5、B【详解】解:图和是轴对称图形,故选:B【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直
9、线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键6、B【分析】由折叠的性质得出BDAD,由题意得出AD+DCBD+DCBC即可得出答案【详解】解:ABC沿直线DE折叠后,点B与点A重合,BDAD,AC6cm,ADC的周长为14cm,AD+DC1468cm,BD+DCBC8cm,故选:B【点睛】此题主要考查了翻折变换的性质,根据题意得出ADBD是解题关键7、B【详解】解:、不是轴对称图形,故本选项错误,不符合题意;、是轴对称图形,故本选项正确,符合题意;、不是轴对称图形,故本选项错误,不符合题意;、不是轴对称图形,故本选项错误,不符合题意故选:B【点睛】本题考查了轴对称
10、图形,解题的关键是掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合8、D【详解】解:A、不是轴对称图形,故不符合题意;B、有四条对称轴,故不符合题意;C、不是轴对称图形,故不符合题意;D、有三条对称轴,故符合题意故选:D【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形9、A【分析】利用轴对称图形的概念可得答案【详解】解:A、是轴对称图形,故此选项合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴
11、对称图形,故此选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形10、B【分析】根据轴对称图形的定义逐一进行判定解答【详解】解:A、轴对称图形可以是1个图形,不符合题意;B、等边三角形有三条对称轴,即三边垂直平分线,符合题意;C、两个等面积的图形不一定轴对称,不符合题意;D、直角三角形不一定是轴对称图形,不符合题意故选:B【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形折痕所在的这条直线叫做对称轴二、填空题1、2【分析】根据题意直接利
12、用关于x轴对称点的性质,得出a,b的值即可【详解】解:点M和点N关于x轴对称3=a,a-2+b=0a=3,b=-1a+b=2.故答案为:2.【点睛】本题主要考查关于x轴对称点的性质,正确记忆横纵坐标关系是解题的关键2、24 【分析】根据轴对称的性质可得,然后根据三角形的周长定义求出的周长为P1P2,从而得解;根据等边对等角可得:,由三角形外角的性质可得:,再根据三角形内角和定理得:,最后依据各角之间得数量关系即可求出答案【详解】解:如图,P点关于OA、OB的对称点P1,P2,的周长,的周长为24;,;故答案为:24;答案为:【点睛】题目主要考查轴对称的性质及等腰三角形的性质,三角形外角和定理等
13、知识点,熟练掌握各知识点间的相互联系,融会贯通综合运用是解题关键3、【分析】根据矩形的性质得到BAE=DCE,AB=CD,再由对顶角相等可得AEB=CED,推出AEBCED,根据等腰三角形的性质即可得到结论,依此可得正确;无法判断ABE和CBD是否相等【详解】解:四边形ABCD为矩形,BAE=DCE,AB=CD,由对折可得: 在AEB和CED中,(AAS),BE=DE,EBD为等腰三角形,折叠后得到的图形是轴对称图形,无法判断ABE和CBD是否相等故其中正确的是故答案为【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不
14、变4、44【分析】根据平行线的性质和翻折不变性解答【详解】解:ADBC,DFE180CEF18068112,DFE112,GFE18011268,GFD1126844故答案为:44【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形5、7【分析】根据折叠的性质,可得BE=BC=6,CD=DE,从而AE=AB-BE=2,再由AED的周长AD+DE+AE,即可求解【详解】解:沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,BE=BC=6,CD=DE,AB8,AE=AB-BE=2,AED的周长AD+DE+AE=AD+CD+AE=AC+DE=5+2=7故答案为:7【点睛】本题主要考查了
15、折叠的性质,熟练掌握折叠前后对应线段相等,对应角相等是解题的关键三、解答题1、(1)见解析;(2)见解析,点P坐标为(3,0)【分析】(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接可得;(2)作点A关于x轴的对称点,再连接交x轴于点P【详解】(1)如图所示,即为所求;(2)如图所示,作点A关于x轴的对称点,再连接交x轴于点P,其点P坐标为(3,0)【点睛】本题主要考查作图轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及最短路线问题2、(1)见解析;(2)5厘米【分析】(1)由翻折的性质可知BD=DC,然后连接AD即可;(2)由BD=DC可知ABD与ACD的周长差等于AB与A
16、C的差【详解】解:(1)连接AD,由翻折的性质可知:BD=DC,AD是ABC的中线如图所示: (2)BD=DC,ADC的周长-ADB的周长=AC+DC+AD-(AD+AB+DC)=AC-AB=16-11=5cm【点睛】本题主要考查的是翻折的性质,由翻折的性质得到BD=DC是解题的关键3、(1)见解析;(2)见解析;(3)见解析;(4)见解析【分析】(1)取格点,连接交于点,线段即为所求;(2)作线段关于直线的对称直线与网格线的交点即为所求;(3)取格点,连接,交于点,点即为所求;(4)的中线的交点,即为所求【详解】解:(1)如图,取格点,连接交于点,由CHTACB及三角形内角和定理,可证,线段
17、即为所求线段;(2)如图,作线段关于直线的对称直线,与网格线的交点即为所求;(3)如图,同(1)一样,先可判断,根据等腰三角形的性质,可得出点即为所求;(4)如图,作三条边的中线,交点于点为重心,根据重心和三角形3个顶点组成的3个三角形面积相等即可确定点即为所求【点睛】本题考查作图轴对称变换,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题,灵活运用所学知识解决问题4、(1)见解析;(2)见解析【分析】(1)根据轴对称图形的性质得出答案即可;(2)根据轴对称图形的性质得出答案即可【详解】解:(1)如图:(2)如图: 【点睛】此题主要考查了利用轴对称设计图案,熟练掌握轴对称图形的性质是解题关键5、见解析【分析】根据等腰三角形的性质得到B=C,运用AAS证明DEBDFC即可【详解】ABAC,D是BC的中点,B=C,DB=DC,DEAB,DFAC,BED=CFD=90,DEBDFC(AAS),DE=DF【点睛】本题考查了等腰三角形的性质,三角形的全等判定和性质,熟练掌握全等三角形的判定定理和性质是解题的关键