《2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程定向测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程定向测评试卷(名师精选).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:,则的值是()ABC5D52、分式中a和b都扩大10倍,那么分式值()A不变B扩大10倍C缩小10倍
2、D缩小100倍3、若关于的一元一次不等式组的解集为,且关于的分式方程的解为负整数,则所有满足条件的整数的值之和是( )ABCD4、在代数式,中,分式的个数为( )A2B3C4D55、PM2.5是大气中直径小于的颗粒物,将0.0000025用科学记数法表示为( )ABCD6、雾是由悬浮在大气中微小液滴构成的气溶胶,雾滴的直径多为0.000004m0.00003m其中,0.000004用科学记数法表示为( )A4106B4107C410-6D410-77、如果把分式中的和都扩大为原来的2倍,那么分式的值( )A扩大为原来的4倍B扩大为原来的2倍C不变D缩小为原来的2倍8、若分式中的a,b的值同时扩
3、大到原来的4倍,则分式的值( )A是原来的8倍B是原来的4倍C是原来的D不变9、分式方程的解是( )ABCD10、使分式有意义的x取值范围是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若是关于的方程的解,则的值为_2、若分式的值为0,则x_3、计算:_4、当x_时,分式有意义5、当时,分式的值为_三、解答题(5小题,每小题10分,共计50分)1、先化简,再从的范围内选取一个合适的整数代入求值2、解分式方程:3、已知,求代数式的值4、2021年3月5日,十三届全国人大四次会议制定了2030年前碳排放达峰行动方案为发展低碳经济、减少碳排放,于今年10月1日
4、起上调了企业用电价格,调整后电价是调整前的1.5倍已知某企业今年10月份比今年6月份少用电2000度,6月份的电费是4000元,10月份的电费是3600元求:调整后每度电的价格5、解答:(1)计算:(2)解分式方程:-参考答案-一、单选题1、D【分析】首先分式方程去分母化为整式方程,求出(ba)的值,把(ba)看作一个整体代入分式约分即可【详解】解:,baab,5;故选:D【点睛】本题考查了分式的加减法、分式的值,熟练掌握这一类型的解题方法,首先分式方程去分母化为整式方程,把(b-a)看作一个整体代入所求分式约分是解题关键2、C【分析】根据题意分别用10a和10b去代换原分式中的a和b,进而利
5、用分式的基本性质化简即可【详解】解:分别用10a和10b去代换原分式中的a和b,得,故分式的值缩小10倍故选:C【点睛】本题考查分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论3、B【分析】化简一元一次不等式组,根据解集为-2得到a的取值范围;解分式方程,根据解是负整数解,且不是增根,得到a的最终范围,这个范围内能使y是整数的a确定出来求和即可【详解】解:一元一次不等式组整理得到:,不等式组的解集为x-2,-2,a-8; 分式方程两边都乘以(y+1)得:2y=a-(y+1),整理得3y=a-1,y=y有负整数解,
6、且y+10,0,且-1,解得:a1,且a-2能使y有负整数解的a为:-8,-5,和为-13故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算考虑解分式方程可能产生增根是解题的关键4、A【分析】根据分式的定义解答即可【详解】解: 、 的分母中含字母,是分式, 、 、的分母中不含字母,不是分式,故选:A【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,注意不是字母,是常数,所以分母中含的代数式不是分式,是整式5、C【分析】科学记数法的形式是: ,其中10,为整数所以,取决于原数小数点的移动位数与移
7、动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数本题小数点往右移动到2的后面,所以【详解】解:0.0000025 故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响6、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000004=410-6故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一
8、个不为零的数字前面的0的个数所决定7、B【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可【详解】解:分别用2x和2y去代换原分式中的x和y,得,可见新分式扩大为原来的2倍故选B【点睛】本题主要考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论8、D【分析】根据分式的基本性质,把a,b的值同时扩大到原来的4倍,代入原式比较即可【详解】解:a,b的值同时扩大到原来的4倍,原式=;分式的值不变;故选:D【点睛】本题考查了分式的基本性质,解题关键是熟练运用分式的基本性质进行化
9、简9、D【分析】两边都乘以2(3x-1),化为整式方程求解,然后检验即可【详解】解:,两边都乘以2(3x-1),得3(3x-1)-2=7,9x-3-2=7,9x=12,检验:当时,2(3x-1) 0,是原分式方程的解,故选D【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验10、C【分析】令分母x+10,求解即可【详解】分式有意义,x+10,即,故选C【点睛】本题考查了分式有意义的条件,让分母不等于零转化为不等式求解是解题的关键二、填空题1、【分析】把代入方程,得到关于的一元一次方程,再解方程即可.【详解】解: 是
10、关于的方程的解, 解得: 故答案为:【点睛】本题考查的是分式方程的解,掌握“把分式方程的解代入原方程求解未知系数的值”是解本题的关键.2、5【分析】求出分式的分子等于0且分母不为0时的的值即可【详解】解:由题意得:,解得,故答案为:5【点睛】本题考查了分式值为零的条件,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少3、xy【分析】原式利用同分母分式的减法法则计算,约分即可得到结果【详解】解:xy故答案为:xy【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解答本题的关键4、5【分析】根据分式有意义的条件即可求出答案【详解】解:由分式
11、有意义的条件可知:x-50,x5,故答案为:5【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是:分母不为0是解题的关键5、2025【分析】把分式化简为,然后把b的值代入计算即可【详解】解:,当时,原式2021+42025故答案为:2025【点睛】本题考查了分式的化简求值,熟练掌握利用平方差公式对分式进行化简是解题的关键三、解答题1、;【分析】先根据分式运算法则进行化简,再确定符号题意的字母的值代入求即可【详解】解:因为且x是整数且和,所以,当时,原式【点睛】本题考查了分式的化简求值,解题关键是熟练运用分式运算法则,按照分式运算顺序化简,正确确定字母的值,代入求解2、【分析】分式方程去
12、分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:去括号得:,解得:,检验:当时,最简公分母,原方程的解是【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根3、,【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将的值代入计算即可求出值【详解】解:,当时,【点睛】本题考查了分式的化简求值,二次根式的化简,解题的关键是熟练掌握运算法则4、调整后每度电的价格是1.2元【分析】设调整前每度电的价格是元,从而可得调整后每度电的价格是元,再根据
13、“某企业今年10月份比今年6月份少用电2000度,6月份的电费是4000元,10月份的电费是3600元”建立方程,解分式方程即可得【详解】解:设调整前每度电的价格是元,则调整后每度电的价格是元,由题意得:,解得,经检验,是原方程的解,且符合题意,当时,答:调整后每度电的价格是1.2元【点睛】本题考查了分式方程的应用,正确建立方程是解题关键需注意的是,解分式方程需要进行检验5、(1)(2)【分析】(1)根据二次根式、零指数幂、负整数指数幂的运算法则计算即可得答案;(2)方程两边同时乘以最简公分母(x1),将方程去分母转化为整式方程,解方程后检验即可得答案(1)=(2)方程两边同乘(x1)得:,去括号得:,移项、合并得:3x2,解得:x,经检验x是原方程的解,原方程的解为x【点睛】本题考查二次根式的混合运算、零指数幂、负整数指数幂的运算及解分式方程,熟练掌握运算法则及解分式方程的步骤是解题关键