《2022年中考特训浙教版初中数学七年级下册第五章分式单元测试练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年中考特训浙教版初中数学七年级下册第五章分式单元测试练习题(名师精选).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如果分式的值为0,那么x的值为( )A0B1CD2、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD3、下列说法中正确的是( )A是整式B和0都是单项式C单项式的系数为D多项式的次数是34、计算的正确结果是( )A2021BCD5、新冠疫苗载体腺病毒的直径约为0.000085毫米,将数0.000085用科学记数法表示为( )A8510-6B8.510-5C8
2、.510-6D0.8510-46、 “五一”节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为( )ABCD7、据报道,中国医学研究人员通过研究获得了纯化灭活新冠病毒疫苗,该疫苗在低温电镜下呈椭圆形颗粒,最小直径约为90nm,已知1nm109m,则90nm用科学记数法表示为( )A0.09106mB0.9107mC9108mD90109m8、实验测得,某种新型冠状病毒的直径是120纳米(1纳米米),120纳米用科学记数法可表示为()A米B米C米D米9、下列各数(2)0,(2),(2
3、)2,(2)2中,负数的个数为()A1个B2个C3个D4个10、一双鞋子如卖150元,可赚50%,如卖120元可赚()A20%B22%C25%D30%二、填空题(5小题,每小题4分,共计20分)1、用小数表示下列各数:_,_2、用科学记数法表示:_3、若,则的值为_4、冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米_米5、用小数表示应为_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中2、(学习材料)拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反
4、的项,这样的分解因式的方法称为拆项添项法,如:例1 分解因式:(解析)解:原式=例2 分解因式:(解析)解:原式=(知识应用)请根据以上材料中的方法,解决下列问题:(1)分解因式:_(2)运用拆项添项法分解因式:(3)化简:3、某社区拟建A,B两类摊位以搞活“地摊经济”,每个摊位的占地面积A类比B类多2平方米建A类,B类摊位每平方米的费用分别为40元,30元若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的(1)求每个A,B类摊位的占地面积(2)已知该社区规划用地70平方米建摊位,且刚好全部用完请写出建A,B两类摊位个数的所有方案,并说明理由请预算出该社区建成A,B两类摊位需
5、要投入的最大费用4、(1)计算(2)先化简,再求值:,其中,5、观察下列等式:第一个等式:第二个等式:第三个等式:按上述规律,回答下列问题:(1)请写出第五个等式:;(2)用含n的式子表示第n个等式: (3)(得出最简结果)(4)计算:-参考答案-一、单选题1、B【分析】分式的值为0,可知分母不为0,分子为0,由此可得到最终结果【详解】分式的值为0,解得,又,故选:B【点睛】本题考查了分母的值为0的条件,属于基础题,解题的关键是明白分母不为0,分子为02、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与
6、小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值3、B【分析】根据分母中含有字母,可判断A不正确,根据单项式定义可判断B正确;根据单项式系数定义可判断C不正确;根据多项式的次数定义可判断D不正确【详解】解:A. 分母中有字母,是分式,不是整式,故选项A不正确;B. 和0都是单项式,故选项B正确;C. 单项式的系数为,不是,故选项C不正确;D. 多项式中单项式是4次,所以多项式的次数是
7、4而不是3,故选项D不正确故选择B【点睛】本题考查分式与整式的区别,单项式,单项式系数,多项式次数,熟练掌握相关定义是解题关键4、D【分析】根据负整数指数幂的性质计算即可;【详解】;故选D【点睛】本题主要考查了负整数指数幂,准确计算是解题的关键5、B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可【详解】解: 0.000085=8.510-5, 故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为
8、由原数左边起第一个不为零的数字前面的0的个数所决定6、D【分析】设实际参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发前每名同学分担的车费为:,根据每个同学比原来少摊了3元钱车费即可得到等量关系【详解】解:设实际参加游览的同学共x人,根据题意得:,故选:D【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数7、C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:90nm=9010-9m=
9、910-8m故选:C【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值8、B【分析】科学记数法的表示形式为的形式,其中,为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同【详解】解:120纳米米米故选:B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,为整数,表示时关键要确定的值以及的值9、A【分析】先对每个数进行化简,然后再确定负数的个数【详解】(2)01,(2)2,(2)24,(2)24,负数的个数有1个故选:A【点睛】本题考查绝对值,有理数的乘
10、方、正数和负数的意义,正确化简各数是解题的关键10、A【分析】根据“”求出进价,再代入120求出利润率即可【详解】设进价为x元依题意,得解得卖120元可赚故选A【点睛】本题考查了分式方程的应用,根据利润率公式列式是解决本题的关键二、填空题1、0.00001 0.0025 【分析】把1小数点向左移动5位即可得出答案,2.5小数点向左移动3位即可得出答案【详解】解:;故答案为:0.00001;0.0025【点睛】本题考查了写出科学记数法表示的原数,将科学记数法表示的数,还原成通常表示的数,就是把的小数向左移动位所得到的数2、【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确
11、定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数【详解】解:,故答案为:【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,正确确定a的值以及n的值是解决问题的关键3、【分析】根据多项式的乘法计算,根据一次项系数和常数项确定的值,进而求得代数式的值【详解】解得故答案为:【点睛】本题考查了多项式的乘法,负整指数幂,解二元一次方程组,掌握多项式的乘法运算是解题的关键4、8.1108【分析】科学记数法的表示形式为a10n的形式,其中1|a|10
12、,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于等于10时,n是正整数;当原数的绝对值小于1时,n是负整数【详解】解:0.0000000818.1108故答案为:8.1108【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数表示时关键要确定a的值以及n的值5、-0.00016【分析】根据负整数指数幂的意义得出,即可求解【详解】解:故答案为【点睛】本题考查了科学记数法,解题关键是熟知:绝对值大于0小于1的数的科学记数法的形式(,n为正整数)中,n为原数从左至右第一个非零数前面0的个数
13、三、解答题1、;1【分析】将分式通分相加然后约分,代入求值即可【详解】解:原式=,当时,原式=1【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键2、(1);(2);(3)【分析】(1)根据题意利用拆项添项法,并结合完全平方公式和平方差公式进行因式分解;(2)根据题意利用拆项添项法,并结合完全平方公式和平方差公式进行因式分解;(3)根据题意利用拆项添项法对分式的分子进行因式分解,然后再约分化简【详解】解:(1),;(2),;(3),原式【点睛】本题考查因式分解,理解题意,并熟练掌握完全平方公式和平方差公式的公式结构是关键3、(1)每个A类摊位的占地面积为5平方米,则每个A类摊
14、位的占地面积为3平方米;(2)见解析;2650元【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意:若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的列出分式方程,解方程即可;(2)设建A类摊位a个,B类摊位b个,由题意:该社区规划用地70平方米建摊位,且刚好全部用完列出二元一次方程,求出正整数解即可;求出建成A、B两类摊位需要投入的费用为-30b+2800,b越小,费用越大,即可求解【详解】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意得:,解得:x=3,经检验,x=3是原方
15、程的解,则x+2=5,答:每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)有4个方案,理由如下:设建A类摊位a个,B类摊位b个,由题意得:5a+3b=70,则a=14-b,a、b为正整数,或或或,共有4个方案:A类摊位11个,B类摊位5个;A类摊位8个,B类摊位10个;A类摊位5个,B类摊位15个;A类摊位2个,B类摊位20个;建成A、B两类摊位需要投入的费用为:405a+303b=200(14-b)+90b=-30b+2800,b越小,费用越大,当b=5时,费用最大值=-305+2800=2650(元),即该社区建成A、B两类摊位需要投入的最大费用为2650元【点
16、睛】本题考查了分式方程的应用、二元一次方程的应用等知识;找准等量关系,列出分式方程和二元一次方程是解题的关键4、(1)-11,(2)4a2-4ab+2b2,【分析】(1)按照实数计算方法和计算法则计算即可 (2)先化简,再代入数值求解【详解】解:(1)原式;(2)原式,当得:原式=【点睛】本题考查实数的混合运算和代数式的混合运算,掌握对应的方法和运算法则是本题解题关键5、(1),;(2),(3);(4)【分析】(1)根据已知4个等式对比发现规律可得;(2)根据已知等式列出算式即可;(3)根据已知等式的规律列出算式,然后计算化简后的算式即为所求;(4)根据已知等式的规律列出算式,然后裂项相消,计算化简后的算式即为所求【详解】(1)观察得a5=;(2)观察得an=;(3);(4);【点睛】本题考查了分式的四则运算及数式的规律探究来理解裂项相消法,考验学生的阅读理解能力