【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3.doc

上传人:可****阿 文档编号:32532471 上传时间:2022-08-09 格式:DOC 页数:8 大小:330KB
返回 下载 相关 举报
【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3.doc_第1页
第1页 / 共8页
【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3.doc》由会员分享,可在线阅读,更多相关《【北京特级教师 同步复习精讲辅导】2022-2022高中数学 古典概型课后练习 新人教版必修3.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、古典概型课后练习一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球(1)列举出所有可能结果(2)设第一次取出的球号码为x,第二次取出的球号码为y,写出B=“点(x,y)落在直线 y=x+1 上方”这一事件包含的基本事件一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为X,将球放回袋中,然后再从袋中随机取一个球,该球的编号为Y(1)列出所有可能结果(2)写出A=“取出球的号码之和小于4”这一事件包含的基本事件(3)写出B=“编号XY”这一事件包含的基本事件从1、2、3

2、、4中任取两个不同的数字构成一个两位数,则这个两位数大于20的概率为 一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率某医院派出医生下乡医疗,一天内派出医生人数及其概率如下:医生人数012345人及以上概率0.10.160.30.20.20.04求:(1)派出医生至多2人的概

3、率;(2)派出医生至少2人的概率袋中有若干小球,分别为红色、黑色、黄色、白色,从中任取一球,得到红球的概率为,得到黑球或黄球的概率为,得到黄球或白球的概率为试求任取一球,得到黑球,得到黄球,得到白球的概率各是多少?在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等求取出的两个球上标号为相邻整数的概率在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等求事件“取出的两个球上标号之和能被3整除”的概率从1,3,5,7这四个数中随机地取两个数组成一个两位数,则组成的两

4、位数是5的倍数的概率为 已知:a、b、c为集合A=1,2,3,4,5,6中三个不同的数,通过如下框图给出的一个算法输出一个整数a,则输出的数a=5的概率是 假定某运动员每次投掷飞镖正中靶心的概率为40%现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次

5、正中靶心的概率为 从某小组的2名女生和3名男生中任选2人去参加一项公益活动(1)求所选2人中恰有一名男生的概率;(2)求所选2人中至少有一名女生的概率已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()AB C D设集合A1, 2,B=1, 2, 3,分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a, b),记“点P(a

6、, b)落在直线x+y=n上”为事件(2n5,nN),若事件Cn的概率最大,则n的所有可能值为( )A3 B4C2和5D3和4已知关于x的一元二次函数f(x)=ax2-bx+1,设集合P=1,2,3,Q=-1,1,2,3,4,分别从集合P和Q中随机取一个数作为a和b(1)求函数y = f(x)有零点的概率;(2)求函数y = f(x)在区间1,+)上是增函数的概率古典概型课后练习参考答案见详解详解:(1)由题意知共有25种结果,用一对有序数对表示出可能出现的情况,第一个数字表示第一次抽到的数字,第二个数字表示第二次抽到的数字,下面列举出所有情况:(1,1)(1,2)(1,3)(1,4)(1,5

7、)(2,1)(2,2)(2,3)(2,4)(2,5)(3,1)(3,2)(3,3)(3,4)(3,5)(4,1)(4,2)(4,3)(4,4)(4,5)(5,1)(5,2)(5,3)(5,4)(5,5)(2)满足条件的事件是点(x,y)落在直线y=x+1上方的有:(1,3),(1,4),(1,5),(2,4),(2,5),(3,5)共6种见详解详解:(1)所有可能的结果共有:(1,1)、(1,2)、(1,3)、(1,4)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(4,1)、(4,2)、(4,3)、(4,4),共计16个(2)事件“取出球的

8、号码之和小于4”包含的结果有:(1,1)、(1,2)、(2,1),共计3个;(3)事件B=“编号XY”包含的结果有:(1,2)、(1,3)、(1,4)、(2,3)、(2,4)、(3,4),共计6个详解:由题意知本题是一个等可能事件的概率,试验发生所包含的事件是从4个数字中选两个数字进行排列,共有种结果,两位数大于20的为:21,23,24,31,32,34,41,42,43共9种结果,因此概率为(1);(2)详解:(1)在7张卡片中共有两张卡片写有数字1,从中任意抽取一张卡片,卡片上写有数字1的概率是(2)组成的所有两位数列表为:十位个位 12 3 4 1 112131 41 2 122232

9、 42 3 1323 33 43 或列树状图为:这个两位数大于22的概率为(1)0.56;(2)0.74详解:记事件A为“不派出医生”,事件B为“派出1名医生”,事件C为“派出2名医生”,事件D为“派出3名医生”,事件E为“派出4名医生”,事件F为“派出不少于5名医生”则事件A、B、C、D、E、F彼此互斥,且P(A)0.1,P(B)0.16,P(C)0.3,P(D)0.2,P(E)0.2,P(F)0.04(1)“派出医生至多2人”的概率为P(ABC)P(A)P(B)P(C)0.10.160.30.56(2)“派出医生至少2人”的概率为P(CDEF)P(C)P(D)P(E)P(F)0.30.20

10、.20.040.74,或1P(AB)10.10.160.74详解:记“任取一球,得到红球,得到黑球,得到黄球,得到白球”分别为事件A、B、C、D,则由题意可得,解得所以,任取一球,得到黑球,得到黄球,得到白球的概率各是详解:设从甲、乙两个盒子中各取1个球,其数字分别为x,y,用(x,y)表示抽取结果,则所有可能有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种所取两个小球上的数字为相邻整数的结果有(1,2),(2,1),(2,3),(3,2),

11、(3,4),(4,3),共6种故所求概率详解:基本事件总数为55=25种,记事件“取出两个球上标号之和能被3整除”为事件A,事件包含(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(4,5),(5,4)共9种详解:如下表,任意抽取两个不同数字组成一个两位数,共12种情况,其中是5的倍数的有15,35,75三种,组成两位数能被3整除的概率为 13571 131517331 353755153 577717375 故答案为:详解:根据框图判断,本框图输出的a为输入的三个数a,b,c中的最大值最大值是3的情况,输入的三个数为1,2,3;1种情况最大值是4的情况,输

12、入的三个数为1,2,3里两个以及4;3种情况最大值是5的情况,输入的三个数为1,2,3,4里两个数以及5;6种情况最大值是6的情况,输入的三个数为1,2,3,4,5里两个数及6;10种情况a=5的概率=故答案为详解:由题意知模拟两次投掷飞镖的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示两次投掷飞镖恰有一次命中的有:93,28,45,25,73,93,30,48,35共10组随机数,所求概率为(1);(2)详解:设2名女生为a1,a2,3名男生为b1,b2,b3,从中选出2人的基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3), (a2,b1),(a2,b

13、2),(a2,b3),(b1,b2),(b1,b3),(b2,b3),共10种设“所选2人中恰有一名男生”的事件为A,则A包含的事件有:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),共6种,P(A),故所选2人中恰有一名男生的概率为(2)设“所选2人中至少有一名女生”的事件为B,则B包含的事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),共7种,P(B),故所选2人中至少有一名女生的概率为(1)0.22;(2)0.90详解:(1)记“甲射击一次,命中不足8环”为事件A,则P(

14、A)1-0.56-0.220.22(2)记“甲射击一次,至少命中7环”为事件B,则P(B)0.56+0.22+0.120.90A详解:记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个因此P(A)D详解:所有基本事件为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共6个,所以所以最大时的n值为3或4(1);(2)详解:(a,b)共有

15、(1,-1),(1,1),(1,2),(1,3),(1,4),(2,-1),(2,1),(2,2),(2,3),(2,4),(3,-1),(3,1),(3,2),(3,3),(3,4)15种情况(1)满足=b2-4a0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况函数y =f(x)有零点的概率(2)二次函数f(x)=ax2-bx+1的对称轴,函数y = f(x)在区间1,+)上是增函数,有(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),(2,3),(2,4),(3,-1),(3,-1),(3,2),(3,3),(3,4),共13种情况函数y=f(x)在区间1,+)上是增函数的概率- 8 -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁