《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称章节练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称章节练习试题(含详细解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将正方形图案翻折一次,可以得到的图案是( )ABCD2、下列图形不是轴对称图形的是( )ABCD3、如图,直
2、线、相交于点,为这两条直线外一点,连接点关于直线、的对称点分别是点、若,则点、之间的距离可能是( )ABCD4、下列四个图案中是轴对称图形的是()ABCD5、在平面直角坐标系中,点P(2,3)关于x轴对称的点是()A(2,3)B(2,3)C(3,2)D(2,3)6、下列在线学习平台的图标中,是轴对称图形的是()ABCD7、如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是( )ABCD8、在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中轴对称图形是( )ABCD9、下列图形是轴对称图形的是( )ABCD10、下列图案,是轴对称图形的为()ABCD第卷(非选择题 70分)二、填空
3、题(5小题,每小题4分,共计20分)1、如图,AC平分DCB,CBCD,DA的延长线交BC于点E,若DAC125,则BAE的度数为 _2、如图,ABC 与关于直线 l 对称,则B 的度数为_3、在“线段、钝角、三角形、等腰三角形、圆”这五个图形中,是轴对称图形的有_个4、如图,把四边形ABCD纸条沿MN对折,若ADBC,52,则AMN_5、如图,BD是ABC的角平分线,E和F分别是AB和AD上的动点,已知ABC的面积是12cm2,BC的长是8cm,则AF+EF的最小值是_cm三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC,D是BC的中点,DEAB,DFAC,E,F
4、为垂足求证:DEDF2、如图,正三角形网格中,已知两个小三角形被涂黑(1)再将图中1其余小三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的);(2)再将图中2其余小三角形涂黑两个,使整个被涂黑的图案构成一个轴对称图形(画出两种不同的)3、如图所示,把一块长方形纸片ABCD沿EF折叠,EFG50,求DEG和BGM的大小4、如图1,在RtABC中,ABC90,ABBC,D为BC边上一点,连接AD,将ABD沿AB翻折得到ABE,过点E作AD的垂线,垂足为F,延长EF交AC于G(1)求证:EAEG;(2)连接DG如图2,当DGAC时,试判断BD与CD的数量关系,并说明理由;若AB5
5、,EDG的面积为4,请直接写出CDG的面积5、如图,是的角平分线, 交于点E,交 于点F图中与有什么关系?为什么?-参考答案-一、单选题1、B【分析】根据轴对称的性质进行解答判断即可【详解】解:利用轴对称可得将正方形图案翻折一次,可以得到的图案是,故选:B【点睛】本题考查了轴对称的性质,熟练掌握轴对称的定义与性质是解本题的关键2、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故
6、选B【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键3、B【分析】由对称得OP1OP3.5,OPOP23.5,再根据三角形任意两边之和大于第三边,即可得出结果【详解】连接,如图: 点关于直线,的对称点分别是点,故选:【点睛】本题考查线轴对称的性质以及三角形三边关系,解本题的关键熟练掌握对称性和三角形边长的关系4、D【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义不符合
7、题意; B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义不符合题意; C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义不符合题意; D、是轴对称图形,符合题意故答案为:D【点睛】本题考查了轴对称图形,解题关键是掌握轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论【详解】解:点P(2,3)关于x轴对称的点的坐标为(2,3)故选A【点睛】本题考查的是
8、求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解题的关键6、B【分析】根据轴对称图形定义进行分析即可如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形故选:B【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合7、A【分析】根据剪下的图形为等腰直角三角形,展开后为正方形,可知剪去的仍为正方形,
9、由此即知答案【详解】由题意知,剪下的图形为等腰直角三角形,展开后为正方形,所以剪去的为正方形,原图为正方形,其还原的过程如下:故选:A【点睛】本题考查了图形的折叠及裁剪,关键是根据折叠后裁剪的过程还原,对学生的想象能力有更高的要求8、C【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键9、C【分析】根据如果一个图形沿一条直线折叠
10、,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置10、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:A不是轴对称图形,故本选项不符合题意;B不是轴对称图形,故本选项不符合题意;C不是轴对称图形
11、,故本选项不符合题意D是轴对称图形,故本选项符合题意;故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题1、70【分析】先根据角平分线的定义得到DCA=BCA,即可利用SAS证明DCABCA得到BAC=DAC=125,由CAE=180-DAC=55,则BAE=BAC-CAE=70【详解】解:AC平分DCB,DCA=BCA,又CB=CD,CA=CA,DCABCA(SAS),BAC=DAC=125,CAE=180-DAC=55,BAE=BAC-CAE=70,故答案为:70【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,解题的关键
12、在于能够熟练掌握全等三角形的性质与判定条件2、100【分析】根据轴对称的性质可得,再根据和的度数即可求出的度数【详解】解: 与关于直线 l 对称,故答案为:【点睛】本题主要考查了轴对称的性质以及全等的性质,熟练掌握轴对称的性质和全等的性质是解答此题的关键3、【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据轴对称图形的概念求解即可【详解】解:根据轴对称图形的定义可知:线段、钝角、等腰三角形和圆都是轴对称图形而三角形不一定是轴对称图形故答案为:4【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部
13、分折叠后可重合4、【分析】如图,设点对应点为,则根据折叠的性质求得,根据平行的性质可得,进而求得【详解】如图,设点对应点为, 根据折叠的性质可得,52,故答案为:【点睛】本题考查了折叠的性质,平行线的性质,掌握以上性质是解题的关键5、3【分析】作点关于的对称点,连接,AG,过点作于,将转化为,由点到直线垂线段最短得最小值为的长,由的面积是,的长是,求出即可【详解】解:如图,作点关于的对称点,连接,AG,过点作于,平分,点关于的对称点为点,点在上,、关于对称,垂线段最短,最小值为的长,的面积是,的长是,的最小值是,故答案为:3【点睛】本题主要考查了最短路径问题,解决本题的关键是作动点的对称点,将
14、转化为三、解答题1、见解析【分析】根据等腰三角形的性质得到B=C,运用AAS证明DEBDFC即可【详解】ABAC,D是BC的中点,B=C,DB=DC,DEAB,DFAC,BED=CFD=90,DEBDFC(AAS),DE=DF【点睛】本题考查了等腰三角形的性质,三角形的全等判定和性质,熟练掌握全等三角形的判定定理和性质是解题的关键2、(1)见解析;(2)见解析【分析】(1)根据轴对称图形的性质得出答案即可;(2)根据轴对称图形的性质得出答案即可【详解】解:(1)如图:(2)如图: 【点睛】此题主要考查了利用轴对称设计图案,熟练掌握轴对称图形的性质是解题关键3、DEG100,BGM80【分析】根
15、据平行线的性质可求得DEFEFG50,然后根据折叠的性质可知DEFMEF50,继而可求得DEG,再由EGCDEG 180,解得EGC,进而求得BGM的度数【详解】解:ADBC,EFG50,DEFEFG50,由折叠的性质可知,MEFDEF50,DEGMEFDEF 100,ADBC,EGCDEG 180,EGC 18010080,则BGMEGC80(对顶角相等)【点睛】本题考查了平行线的性质以及折叠的性质,解答本题的关键是熟练掌握平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补4、(1)见解析;(2)BD=;4【分析】(1)证明BAE=DEG,根据等腰直角三角形的性质得到BAC+BA
16、E=ACB+DEG,即可推出结论;(2)过点G作GNBC于N,证明ABEENG,推出GN=BE=BD,根据等腰直角三角形三线合一的性质推出ND=NC=,由此得到结论BD=;由知EB=BD=DN=NC,得到ED=DC,根据三角形面积公式计算即可【详解】(1)证明:由折叠得BAE=BAD,AED=ADE,EGAD,AFE=ABC=ABE90,AED+BAE=ADE+DEG90,BAE=DEG,在RtABC中,ABC90,ABBC,BAC=ACB,BAC+BAE=ACB+DEG,即EAC=EGA,EAEG;(2)过点G作GNBC于N,则ENG=ABE90,AE=AD,AE=EG,AE=EG,BAE=NEG,ABEENG,GN=BE,DGAC,BAC=ACB=45,NGAC,ND=NC=,BE=BD,BD=;由知EB=BD=DN=NC,ED=DC,EDG的面积=4,CDG的面积=【点睛】此题考查全等三角形的判定及性质,折叠的性质,解题的关键是正确掌握全等三角形的判定定理并熟练应用5、相等,理由见解析【分析】先根据角平分线的定义得出,再由平行线的性质即可得出结论【详解】解:相等理由:是的角平分线,,【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等