《备考特训2022年河北保定中考数学二模试题(含答案详解).docx》由会员分享,可在线阅读,更多相关《备考特训2022年河北保定中考数学二模试题(含答案详解).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北保定中考数学二模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若a0,则=( ) AaB-aC- D02、如图,已知于点B,于点A,点E
2、是的中点,则的长为( )A6BC5D3、下列说法正确的是( )A带正号的数是正数,带负号的数是负数.B一个数的相反数,不是正数,就是负数.C倒数等于本身的数有2个.D零除以任何数等于零.4、下列解方程的变形过程正确的是( )A由移项得:B由移项得:C由去分母得:D由去括号得:5、把 写成省略括号后的算式为 ( )ABCD6、石景山某中学初三班环保小组的同学,调查了本班名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个),若一个塑料袋平铺后面积约为,利用上述数据估计如果将全班名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( )ABCD7、以下四个选项表示某天四个城市的平均气温,其中
3、平均气温最高的是( )ABCD8、下列说法中正确的个数是( )两点之间的所有连线中,线段最短;相等的角是对顶角;过一点有且仅有一条直线与己知直线平行;两点之间的距离是两点间的线段;若,则点为线段的中点;不相交的两条直线叫做平行线。A个B个C个D个9、数轴上到点-2的距离为4的点有( )A2B-6或2C0D-6 线 封 密 内 号学级年名姓 线 封 密 外 10、无论a取什么值时,下列分式总有意义的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,圆心角AOB20,将 旋转n得到,则的度数是_度2、在下列实数(每两个3之间依次多一个“1”),中,其中无
4、理数是_3、若,则_.4、将一个圆分割成三个扇形,它们的圆心角度数比为,那么最大扇形的圆心角的度数为_5、实数a、b互为相反数,c、d互为倒数,x的绝对值为,则=_三、解答题(5小题,每小题10分,共计50分)1、我们将平面直角坐标系中的图形D和点P给出如下定义:如果将图形D绕点P顺时针旋转90得到图形,那么图形称为图形D关于点P的“垂直图形”已知点A的坐标为,点B的坐标为(0,1),关于原点O的“垂直图形”记为,点A、B的对应点分别为点(1)请写出:点的坐标为_;点的坐标为_;(2)请求出经过点A、B、的二次函数解析式;(3)请直接写出经过点A、B、的抛物线的表达式为_2、已知关于x的两个多
5、项式Ax28x3Baxb,且整式AB中不含一次项和常数项(1)求a,b的值;(2)如图是去年2021年3月份的月历用带阴影的十字方框覆盖其中5个数字,例如:1,7,8,9,15现在移动十字方框使其履盖的5个数之和等于9a6b,则此时十字方框正中心的数是 _ 3、计算(1);(2);(3); 线 封 密 内 号学级年名姓 线 封 密 外 (4)解方程:(5)先化简,再求值:已知,其中,4、已知关于x的一元二次方程+ax+a+30(1)求证:无论a为任何实数,此方程总有两个不相等的实数根;(2)如图,若抛物线y+ax+a+3与x轴交于点A(2,0)和点B,与y轴交于点C,连结BC,BC与对称轴交于
6、点D求抛物线的解析式及点B的坐标;若点P是抛物线上的一点,且点P位于直线BC的上方,连接PC,PD,过点P作PNx轴,交BC于点M,求PCD的面积的最大值及此时点P的坐标5、已知:二次函数图象的顶点坐标为,且经过点;求此二次函数的解析式-参考答案-一、单选题1、B【分析】根据负数的绝对值等于它的相反数,即可解答【详解】解:a0,|a|=-a故选:B 【点睛】本题考查绝对值,解题的关键是熟记负数的绝对值等于它的相反数2、B【分析】延长交于点F,根据已知条件证明,得出,根据勾股定理求出的长度,可得结果【详解】如图,延长交于点F,点E是的中点,在和中, 线 封 密 内 号学级年名姓 线 封 密 外
7、,在中,点E是的中点,故选:B【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识点,熟练运用全等三角形的判定定理以及性质是解本题的关键3、C【分析】利用有理数的定义判断即可得到结果【详解】解:A、带正号的数不一定为正数,例如+(-2);带负号的数不一定为负数,例如-(-2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和-1,正确;D、零除以任何数(0除外)等于零,故错误;故选C【点睛】本题考查有理数的除法,以及正负数、倒数以及相反数,掌握它们的性质是解题的关键4、D【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查
8、,必须符合变形规则,移项要变号【详解】解析:A由移项得:,故A错误;B由移项得:,故B错误;C.由去分母得:,故C错误;D.由去括号得: 故D正确故选:D【点睛】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则5、D【分析】先把算式写成统一加号和的形式,再写成省略括号的算式即可【详解】把统一加号和,再把写成省略括号后的算式为 5-3+1-5故选:D【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键6、D【分析】先求出每一名学生自己家中一周内丢弃的塑
9、料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平铺后面积那么全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开所占面积即可求出【详解】由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为=10个,则每名同学丢弃的塑料袋平铺后面积约为100.25m2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为402.5=100m2故选D【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法7、D【分析】根据负数比较大小的概念逐一比较即可【详解】解析:故选:【点睛】本题主要考查了正负数的意义,熟悉掌握负数的大小比较
10、是解题的关键8、D【分析】本题属于基础应用题,只需学生熟练掌握平面图形的基本概念,即可完成.【详解】两点之间的所有连线中,线段最短,正确;相等的角不一定是对顶角,但对顶角相等,故本小题错误;过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;两点之间线段的长度,叫做这两点之间的距离,故本小题错误;若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误;在同一平面内,不相交的两条直线叫做平行线,故本小题错误;所以,正确的结论有,共1个故选D【点睛】熟练掌握平面图形的基本概念9、B【分析】分点在点-2的左边和右边两种情况讨论求解【详解】解:点在点-2的左边时,为-
11、2-4=-6,点在点-2的右边时,为-2+4=2,所以,在数轴上到点-2的距离是4的点所表示的数是-6或2故选:B【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查数轴,注意:此题要分为两种情况:在表示-2点的左边和右边10、D【分析】根据分式有意义的条件是分母不等于零进行分析即可【详解】解:A、当a0时,分式无意义,故此选项错误;B、当a1时,分式无意义,故此选项错误;C、当a1时,分式无意义,故此选项错误;D、无论a为何值,分式都有意义,故此选项正确;故选D【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零二、填空题1、20【分析】先根据旋转的性
12、质得,则根据圆心角、弧、弦的关系得到DOC=AOB=20,然后根据圆心角的度数等于它所对弧的度数即可得解.【详解】解: 将旋转n得到,DOC=AOB=20,的度数为20度故答案为20【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了旋转的性质2、(每两个3之间依次多一个“1”),【分析】无理数:即无限不循环小数,据此回答即可【详解】解:,无理数有:(每两个3之间依次多一个“1”),故答案为:(每两个3之间依次多一个“1”),【点睛】此题考查了无理数的概念,注意带根号的要开不尽方才是无理数,无限不循环
13、小数为无理数如,(每两个之间一次多个)等形式 线 封 密 内 号学级年名姓 线 封 密 外 3、【分析】根据条件|m|=m+1进行分析,m的取值可分三种条件讨论,m为正数,m为负数,m为0,讨论可得m的值,代入计算即可【详解】解:根据题意,可得m的取值有三种,分别是:当m0时,则可转换为m=m+1,此种情况不成立当m=0时,则可转换为0=0+1,此种情况不成立当m0时,则可转换为-m=m+1,解得,m=将m的值代入,则可得(4m+1)2011=4()+12011=-1故答案为:-1【点睛】本题考查了含绝对值符号的一元一次方程和代数式的求值解题时,要注意采用分类讨论的数学思想4、【分析】根据它们
14、的圆心角的度数和为周角,则利用它们所占的百分比计算它们的度数【详解】最大扇形的圆心角的度数=360=200故答案为200【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等5、6【详解】解:a、b互为相反数,c、d互为倒数,x的绝对值为,a+b=0,cd=1,x=,当x=时,原式=5+(0+1)+0+1=6+;当x=时,原式=5+(0+1)()+0+1=6.故答案为6.三、解答题1、(1)(1,2);(1,0)(2)(3)【分析】(1)根据旋转的性质得出,;(2)利用待定系数法进行求解解析式即可;(3)利用待
15、定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案(1)解:根据题意作下图: 线 封 密 内 号学级年名姓 线 封 密 外 根据旋转的性质得:,故答案是:(1,2);(1,0);(2)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;(3)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;故答案为:【点睛】本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式2、(1)a8,b3;(2)18【分析】(1)把A与B代入A+B中,去括号合并后由结果不含一次项与常数项求出a与b的值即可;(2)设十字
16、方框正中心的数是m,根据题意列出方程,解方程即可【详解】解:(1)Ax28x3Baxb,A+Bx28x3+ axbx2+(-8+a)x-b+3,由结果中不含一次项和常数项,得到-8+a0,-b+30,解得:a8,b3;(2)设十字方框正中心的数是m,则它上面的数为m-7,它下面的数为m+7,它左面的数为m-1,它右面的数为m+1,列方程得,a8,b3;,解得,;故答案为:18 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了整式的运算和一元一次方程的应用,解题关键是明确不含某项是只该项的系数为0,找出日历中数字关系,列出方程3、(1)(2)(3)(4)(5);【分析】(1)(2
17、)(3)根据有理数的混合运算进求解即可;(4)根据移项合并同类项解一元一次方程即可;(4)先去括号再合并同类项,再将的值代入求解即可(1)(2)(3)(4)解得(5)当,时,原式【点睛】本题考查了有理数的混合运算,解一元一次方程,整式加减的化简求值,正确的计算是解题的关键4、 线 封 密 内 号学级年名姓 线 封 密 外 (1)见解析;(2)y=,点B(4,0);PCD的面积的最大值为1,点P(2,4)【分析】(1)判断方程的判别式大于零即可;(2)把A(-2,0)代入解析式,确定a值即可求得抛物线的解析式,令y=0,求得对应一元二次方程的根即可确定点B的坐标;设点P的坐标为(x,),确定直线
18、BC的解析式y=kx+b,确定M的坐标(x,kx+b),求得PM=-(kx+b),从而利用C,D的坐标表示构造新的二次函数,利用配方法计算最值即可(1),=0,无论a为任何实数,此方程总有两个不相等的实数根(2)把A(-2,0)代入解析式,得,解得a=1,抛物线的解析式为,令y=0,得,解得x=-2(A点的横坐标)或x=4,点B(4,0);设直线BC的解析式y=kx+b,根据题意,得,解得,直线BC的解析式为y=-x+4;抛物线的解析式为,直线BC的解析式为y=-x+4;设点P的坐标为(x,),则M(x,),点N(x,0),PM=-()=,抛物线的对称轴为直线x=1,点D(1,3), 线 封
19、密 内 号学级年名姓 线 封 密 外 =,当x=2时,y有最大值1,此时=4,PCD的面积的最大值为1,此时点P(2,4)【点睛】本题考查了待定系数法确定二次函数,一次函数的解析式,一元二次方程根的判别式,抛物线与x轴的交点,二次函数的最值,分割法求图形的面积,熟练掌握待定系数法,灵活构造二次函数是解题的关键5、【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:,再把代入,求出的值,即可得出二次函数的解析式【详解】解:设抛物线的解析式为:,把代入解析式得,则抛物线的解析式为:【点睛】本题主要考查了用待定系数法求二次函数解析式,解题的关键是掌握在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式