《2021-2022学年度北师大版八年级数学下册第五章分式与分式方程专题训练练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第五章分式与分式方程专题训练练习题(含详解).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,是分式的是( )ABCD2、式子中x的取值范围是( )Ax2Bx2Cx2Dx2且x23、华华同
2、学借了一本书,共280页,要在1周借期内读完当他读了一半时,发现平均每天要多读21页才能在借期内读完他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下面所列方程中,正确的是( )ABCD4、函数中,自变量x的取值范围是()ABCD5、下列各式中,是分式的是( )ABCD6、已知分式的值等于0,则x的值为( )A0B1CD1或7、关于x的方程有增根,则m的值是( )A2B1C0D-18、若分式中的a,b的值同时扩大到原来的4倍,则分式的值( )A是原来的8倍B是原来的4倍C是原来的D不变9、下列关于x的方程是分式方程的是( )ABCD10、分式中a和b都扩大10倍,那么分式值(
3、)A不变B扩大10倍C缩小10倍D缩小100倍第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n_2、将0.000927用科学计数法表示为_3、若是分式方程的根,则a的值为 _4、在中,的取值范围为_5、计算:_三、解答题(5小题,每小题10分,共计50分)1、列方程解应用题:某市为了缓解交通拥堵现象,决定修建一条轻轨铁路的延长线,为使该延长线工程比原计划提前1个月完成,在保证质量的前提下,必须把工作效率提高10%问原计划完成这项工程需要用多少个月
4、?2、为了营造“创建文明城区、共享绿色家园”的良好氛围,房山某社区计划购买甲、乙两种树苗进行社区绿化,已知用1200元购买甲种树苗与用1000元购买乙种树苗的棵树相同,乙种树苗比甲种树苗每棵少20元,问甲种树苗每棵多少元?3、根据材料完成问题:在含有两个字母的式子中,任意交换两个字母的位置,式子的值始终保持不变,像这样的式子我们称之为对称式,如:,请解决下列问题: ; 这3个式子中只有1个属于对称式: (请填序号);(2)已知若,求对称式的值;若,当0时,求的取值范围4、我们知道,假分数可以化为整数与真分数的和的形式例如:=1+ 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的
5、次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”例如:像,这样的分式是假分式;像,这样的分式是真分式类似的,假分式也可以化为整式与真分式的和的形式 例如:;解决下列问题:(1)写出一个假分式为: ;(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)(3)如果分式的值为整数,求x的整数值5、某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程(1)求原来每天加固河堤多少米?(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也增加了25%,那么
6、整个工程完成后承包方需要支付工资多少元?-参考答案-一、单选题1、A【详解】解:A、是分式,故本选项符合题意;B、是整式,不是分式,故本选项不符合题意;C、是整式,不是分式,故本选项不符合题意;D、是整式,不是分式,故本选项不符合题意;故选:A【点睛】本题主要考查了分式的定义,熟练掌握形如 (其中 为整式,且分母 中含有字母)的式子叫做分式是解题的关键2、D【分析】根据二次根式及分式有意义的条件可直接进行求解【详解】解:由题意得:且,解得:且;故选D【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键3、C【分析】根据相等关系:读前一半所用的天数+读后
7、一半所用的天数=7,即可列出方程得到答案【详解】读前一半所用的天数为:天,读后一半所用的天数为:天根据题意得:故选:C【点睛】本题考查了分式方程的应用,关键是理解题意,找到等量关系并列出方程4、B【分析】根据分母不为零,函数有意义,可得答案【详解】解:函数有意义,得,解得,故选:B【点睛】本题考查了函数自变量的取值范围,解题的关键是掌握分母不为零5、B【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式【详解】解:A是整式,不符合题意;B是分式,符合题意;C是整式,不符合题意;D是整式,不符合题意;故选:B【点睛】本题主要考查的是分式的定义,掌握分式的定义是解题关键6、B
8、【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得【详解】解:分式的值为零,解得:x=1,故选B【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键7、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,最简公分母x1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x1),得:m1x0,方程有增根,最简公分母x1=0,即增根是x=1,把x=1代入整式方程,得m=2故选A【点睛】考查了分式方程的增根,解决增根问题的步骤:确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的
9、值8、D【分析】根据分式的基本性质,把a,b的值同时扩大到原来的4倍,代入原式比较即可【详解】解:a,b的值同时扩大到原来的4倍,原式=;分式的值不变;故选:D【点睛】本题考查了分式的基本性质,解题关键是熟练运用分式的基本性质进行化简9、C【分析】根据分式方程的定义判断选择即可【详解】A. ,是一元一次方程,不符合题意; B. ,是一元一次方程,不符合题意; C. ,是分式方程,符合题意; D. ,是一元一次方程,不符合题意故选:C【点睛】本题考查分式方程的定义掌握分式方程是指分母里含有未知数或含有未知数整式的有理方程是解答本题的关键10、C【分析】根据题意分别用10a和10b去代换原分式中的
10、a和b,进而利用分式的基本性质化简即可【详解】解:分别用10a和10b去代换原分式中的a和b,得,故分式的值缩小10倍故选:C【点睛】本题考查分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论二、填空题1、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球个从中任意摸出一球,摸出黑色球的概率是解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键概率=所求情况数与总情况数之比2、9.2710-4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,
11、与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000927=9.2710-4,故答案为:9.2710-4【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、6【分析】首先根据题意,把代入分式方程中,然后根据一元一次方程的解法,求出a的值即可【详解】解:将代入分式方程中,可得:,解得,故答案为:6【点睛】本题考查了分式方程的解,解题的关键是熟练掌握分式方程解的意义4、x-3【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解
12、不等式得到答案【详解】解:由题意得:2x+60,解得:x-3,故答案为:x-3【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键5、xy【分析】原式利用同分母分式的减法法则计算,约分即可得到结果【详解】解:xy故答案为:xy【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解答本题的关键三、解答题1、【分析】设原计划完成这项工程需要用个月,则原计划的效率为 实际的效率为 再根据实际的效率比原计划的效率提高10%,再列方程,解方程即可.【详解】解:设原计划完成这项工程需要用个月,则 整理得: 解得: 经检验:符合题意;答:原计划完成这项工程需要用
13、个月.【点睛】本题考查的是分式方程的应用,掌握“利用分式方程解决工程问题”是解本题的关键.2、甲种树苗每棵120元【分析】设甲种树苗每棵x元,根据题意列出分式方程,故可求解【详解】解:设甲种树苗每棵x元依题意列方程:,解得:经检验是所列方程的解且符合题意,答:甲种树苗每棵120元【点睛】此题主要考查分式方程的实际应用,解题的关键是根据题意找到数量关系列出方程求解3、(1);(2)5;k【分析】(1)根据对称式的定义进行判断;(2)根据已知m=a+b,n=ab,整体代入即可求解;将对称式化简后整理后,解不等式即可求解;【详解】解:(1)a2-b2b2-a2;a2b2=b2a2;当a0时,由定义知
14、属于对称式的是,故答案为:;(2)(x-a)(x-b)=x2-(a+b)x+ab=x2+mx+n,m=-(a+b),n=ab,a2+b2=(a+b)2-2ab=m2-2n,当m=1,n=-2时,a2+b2=12-2(-2)=5;,当m=-3,n=1时,a+b=3,ab=1,解得:k【点睛】本题考查了分式的化简求值,完全平方公式,解一元一次不等式,新定义等知识,解决本题的关键是理解阅读材料,掌握分式计算法则及完全平方公式4、(1);(2)1+;(3)x=0,1,3,4【分析】(1)根据定义即可求出答案(2)根据题意给出的变形方法即可求出答案(3)先将分式化为真分式与整式的和,然后根据题意即可求出
15、x的值【详解】解:(1)根据题意,是一个假分式;故答案为:(答案不唯一) (2); 故答案为:;(3),x2=1或x2=2,x=0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型5、(1)原来每天加固河堤80米;(2)整个工程完成后承包方需要支付工资24000元【分析】(1)设原来每天加固河堤米,则采用新的加固模式后每天加固米,然后根据用26天完成了全部加固任务,列方程求解即可;(2)先算出提高工作效率后每天加固的长度,然后进行求解即可【详解】解:(1)设原来每天加固河堤米,则采用新的加固模式后每天加固米 根据题意得:,解这个方程得: 经检验可知,是原分式方程的根,并符合题意; 答:原来每天加固河堤80米;(2)(米)承包商支付给工人的工资为:(元)答:整个工程完成后承包方需要支付工资24000元【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解