2021-2022学年沪科版九年级数学下册第24章圆同步测评试题(含答案解析).docx

上传人:可****阿 文档编号:32528945 上传时间:2022-08-09 格式:DOCX 页数:29 大小:1.60MB
返回 下载 相关 举报
2021-2022学年沪科版九年级数学下册第24章圆同步测评试题(含答案解析).docx_第1页
第1页 / 共29页
2021-2022学年沪科版九年级数学下册第24章圆同步测评试题(含答案解析).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2021-2022学年沪科版九年级数学下册第24章圆同步测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年沪科版九年级数学下册第24章圆同步测评试题(含答案解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD2、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点

2、,则的长等于( )ABCD3、如图,A,B,C是正方形网格中的三个格点,则是( )A优弧B劣弧C半圆D无法判断4、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对5、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)6、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD7、如图,AB是的直径,弦CD交AB于点P,则CD的长为( )ABCD88、如图,ABCD是正方形,CDE绕点C逆时针方向旋转90后能与CBF重合,那么CE

3、F是()A.等腰三角形B等边三角形C.直角三角形D.等腰直角三角形9、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A1B2C3D410、如图,AB,CD是O的弦,且,若,则的度数为( )A30B40C45D60第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_2、如图,已知,外心为,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是_3、如图,半圆O中,直径AB30,弦CDAB,长为6,则由与AC,AD围成的阴影部分面积为_4、如图,在矩形中,F为中点,P是线段上一点,设,连结并将它绕点P顺时针

4、旋转90得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:当时,;点E到边的距离为m;直线一定经过点;的最小值为其中结论正确的是_(填序号即可)5、如图,O的半径为5cm,正六边形ABCDEF内接于O,则图中阴影部分的面积为 _三、解答题(5小题,每小题10分,共计50分)1、已知:如图,ABC为锐角三角形,ABAC 求作:一点P,使得APCBAC作法:以点A为圆心, AB长为半径画圆;以点B为圆心,BC长为半径画弧,交A于点C,D两点;连接DA并延长交A于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC,BDABAC,

5、点C在A上BCBD,_BACCAD 点D,P在A上,CPDCAD(_) (填推理的依据)APCBAC2、如图,在方格纸中,已知顶点在格点处的ABC,请画出将ABC绕点C旋转180得到的ABC(需写出ABC各顶点的坐标)3、如图,正方形ABCD是半径为R的O内接四边形,R6,求正方形ABCD的边长和边心距4、如图,AB为O的直径,点C在O上,点P在BA的延长线上,连接BC,PC若AB = 6,的长为,BC = PC求证:直线PC与O相切5、在平面直角坐标系xOy中,的半径为2点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”(

6、1)如图,点A,B,C,D横、纵坐标都是整数在点B,C,D中,与点A组成的“成对关联点”的点是_;(2)点在第一象限,点F与点E关于x轴对称若点E,F是的“成对关联点”,直接写出t的取值范围;(3)点G在y轴上若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围-参考答案-一、单选题1、D【详解】解:不是轴对称图形,也不是中心对称图形,故本选项不符合题意;不是轴对称图形,是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解

7、题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键3、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断【详解】解;如图,分别连接AB、A

8、C、BC,取任意两条线段的中垂线相交,交点就是圆心故选:B【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键4、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键5、C【分析】由题意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令

9、y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键6、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考

10、查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合7、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长【详解】解:如图,过点作于点,连接, AB是的直径,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握

11、以上定理是解题的关键8、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出ECF90,即可得到CEF为等腰直角三角形【详解】解:CDE绕点C逆时针方向旋转90后能与CBF重合,ECF90,CECF,CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键9、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2r,120所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键10、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详

12、解】解:,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键二、填空题1、【分析】由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为【详解】是一个圆锥在某平面上的正投影为等腰三角形ADBC在中有即由圆锥侧面积公式有故答案为:。【点睛】本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为2、【分析】由与是等腰直角三角形,得到,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,得到,如图,当时,的值最小,解直角三角形即可得到结论【详解】解:与是等腰直角三角形,在与中,在以

13、为直径的圆上,的外心为,如图,当时,的值最小,则的最小值是,故答案为:【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键3、45【分析】连接OC,OD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解【详解】解:连接OC,OD,直径AB=30,OC=OD=,CDAB,SACD=SOCD,长为6,阴影部分的面积为S阴影=S扇形OCD=,故答案为:45【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键4、【分析】当在点的右边时,得出即可判断

14、;证明出即可判断;根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;当时,有最小值,计算即可【详解】解:,为等腰直角三角形,当在点的左边时,当在点的右边时,故错误;过点作,在和中,根据旋转的性质得:,故正确;由中得知为等腰直角三角形,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,即直线一定经过点,故正确;是等腰直角三角形,当时,有最小值,为等腰直角三角形,由勾股定理:,故正确;故答案是:【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理5、【分析】根据图形分析可得求阴

15、影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可【详解】如图,连接BO,OC,OA,由题意得:BOC,AOB都是等边三角形,AOBOBC60,OABC,故答案为:【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出三、解答题1、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接PC,BDABAC,点C在A上BCBD,BAC=BADBACCAD 点D,P在A上,CPDCAD(圆周角定理) (填推理的依据)

16、APCBAC故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键2、A(-1,-3),B(1,-1),C(-2,0),画图见解析【分析】先画出点A,B关于点C中心对称的点A,B,再连接A,B,C即可解题【详解】解: A关于点C中心对称的点A(-1,-3),B关于点C中心对称的点B(1,-1),C关于点C中心对称的点C(-2,0),如图,ABC即为所求作图形【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键3、边长为,边心距为【分析】过点O作OEBC,垂足为E,利用圆内接四边形的性质求出B

17、OC=90,OBC=45,然后在RtOBE中,根据勾股定理求出OE、BE即可【详解】解:过点O作OEBC,垂足为E,正方形ABCD是半径为R的O内接四边形,R6,BOC=90,OBC=45,OB=OC=6, BE=OE 在RtOBE中,BEO=90,由勾股定理可得OE2+BE2=OB2,OE2+BE2=36,OE= BE=, BC=2BE=, 即半径为6的圆内接正方形ABCD的边长为,边心距为【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于4、见详解【分析】连接OC,由题

18、意易得AOC=60,则有B=OCB=30,然后可得P=B=30,进而可得OCP=90,最后问题可求证【详解】证明:连接OC,如图所示:的长为,AB=6,OC=OA=3,OB=OC,B=OCB=30,BC=PC,P=B=30,POC+P=90,即OCP=90,OC是圆O的半径,直线PC与O相切【点睛】本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键5、(1)B和C;(2);(3)【分析】(1)根据图形可确定与点A组成的“成对关联点”的点;(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;(3)分类讨论:点G在上,点G

19、在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围【详解】(1)如图所示:在点B,C,D中,与点A组成的“成对关联点”的点是B和C,故答案为:B和C;(2)在直线上,点F与点E关于x轴对称,在直线,如下图所示:直线和与分别交于点,与直线分别交于,由题可得:,当点E在线段上时,有的“成对关联点”;(3)如图,当点G在上时,轴,在上不存在这样的矩形;如图,当点G在下方时,也不存在这样的矩形;如图,当点G在上方时,存在这样的矩形GMNH,当恰好只能构成一个矩形时,设,直线与y轴相交于点K,则,即,解得:或(舍),综上:当时,点G,H是的“成对关联点”【点睛】本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁