2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析练习题(精选).docx

上传人:可****阿 文档编号:32528257 上传时间:2022-08-09 格式:DOCX 页数:30 大小:675.41KB
返回 下载 相关 举报
2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析练习题(精选).docx_第1页
第1页 / 共30页
2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析练习题(精选).docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析练习题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系必考点解析练习题(精选).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学第二学期第十五章平面直角坐标系必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到ABC,则点P的坐标是()A(4,5)B(

2、4,4)C(3,5)D(3,4)2、在平面直角坐标系中,点P(2,3)在()A第一象限B第二象限C第三象限D第四象限3、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A正东方向B正西方向C正南方向D正北方向4、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)5、已知点M(m,1)与点N(3,n)关于原点对称,则m+n的值为()A3B2C2D36、若点在第三象限,则点

3、在( )A第一象限B第二象限C第三象限D第四象限7、平面直角坐标系内一点P(3,2)关于原点对称的点的坐标是()A(2,3)B(3,2)C(2,3)D(2,3)8、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线lx轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为()A(0,1)B(2,0)C(2,1)D(2,3)9、平面直角坐标系中,将点A(,)沿着x的正方向向右平移()个单位后得到B点,则下列结论:B点的坐标为(,);线段AB的长为3个单位长度;线段AB所在的直线与x轴平行;点M(,)可能在线段AB上;点N(,)一定在线段AB上其中正确的结论有( )A2个B

4、3个C4个D5个10、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是_2、若点与点关于原点对称,则的值为_3、若点与点关于原点对称,则_4、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5称为正方形的

5、“渐开线”,那么点A2021的坐标是_5、在平面直角坐标系中,点A(3,1)绕原点逆时针旋转180得到的点A的坐标是 _三、解答题(10小题,每小题5分,共计50分)1、已知A(-1,3),B(4,2),C(2,-1)(1)在平面直角坐标系中,画出ABC及ABC关于y轴的对称图形A1B1C1;(2)P为x轴上一点,请在图中标出使PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标 2、如图,ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3)(1)请画出ABC关于y轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC绕点B顺时针旋转90后的A2BC2;(3)求出(2

6、)中A2BC2的面积3、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(2,5),B(1,1),C(3,2)(1)画出ABC关于轴对称的A1B1C1的图形及各顶点的坐标;(2)画出ABC关于轴对称的A2B2C2的图形及各顶点的坐标; (3)求出ABC的面积4、如图,已知的三个顶点分别为,(1)请在坐标系中画出关于轴对称的图形(,的对应点分别是,),并直接写出点,的坐标;(2)求四边形的面积5、在如图所示的正方形网格中,每个小正方形的边长都是1,ABC的顶点都在正方形网格的格点(网格线的交点)上(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1)

7、;(2)请画出ABC关于y轴对称的图形A1B1C1,并写出点B1的坐标为 ;(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 6、在如图所示的平面直角坐标系中,A点坐标为(1)画出关于y轴对称的;(2)求的面积7、如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2)(1)画出ABC关于x轴的对称图形A1B1C1;(2)画出A1B1C1向左平移3个单位长度后得到的A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是_8、如图1,A(2,6),C(6,2),ABy轴于点B,

8、CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG459、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积10、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2)(1)画出ABC关于原点O对称的A1B1C1(2)求A1B1C1的面积-参考答案-一、单选题1、B【分析】对应点的连线段的垂直平分线的交点,即为所求【详解】解:如图,点即为所求,故选:B【点睛】本题考查坐标与图形变化旋转,解

9、题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心2、B【分析】根据点横纵坐标的正负分析得到答案【详解】解:点P(2,3)在第二象限,故选:B【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键3、B【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答4、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO

10、平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小5、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可【详解】解:点与点关于原点对称,故故选:C

11、【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质6、A【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可【详解】点P(m,n)在第三象限,m0,n0,-m0,-n0,点在第一象限故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)7、B【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(x,y),进而得出答案【详解】解答:解:点P(3,2)关于原点对

12、称的点的坐标是:(3,2)故选:B【点睛】此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键8、D【分析】根据垂线段最短可知BCl,即BCx轴,由已知即可求解【详解】解:点A(0,3),经过点A的直线lx轴,C是直线l上的一个动点,点C的纵坐标是3,根据垂线段最短可知,当BCl时,线段BC的长度最短,此时, BCx轴,B(2,1),点C的横坐标是2,点C坐标为(2,3),故选:D【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键9、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断,根据平移的性质即可求得的长,进而判断

13、,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断,根据纵坐标的特点即可判断【详解】解:点A(,)沿着x的正方向向右平移()个单位后得到B点,B点的坐标为(,);故正确;则线段AB的长为;故不正确;A(,),B(,);纵坐标相等,即点A,B到x轴的距离相等线段AB所在的直线与x轴平行;故正确若点M(,)在线段AB上;则,即,不存在实数故点M(,)不在线段AB上;故不正确同理点N(,)在线段AB上;故正确综上所述,正确的有,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键10、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标

14、互为相反数,即可求解【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键二、填空题1、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7)【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数2、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答【详解】解:由点与点关于原点对称,可得n1,

15、故答案为:4【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数3、【分析】利用原点对称的点的坐标特征可知:M点和N点的横坐标之和与纵坐标之和都为0,得到关于、的二元一次方程组,解方程求出、的值,进而求出【详解】和点关于原点对称, 解得: , 故答案为:【点睛】本题主要是考察了关于原点对称的点的特征,熟练掌握关于原点对称的点的横坐标之和与纵坐标之和都为0,是解决此类题的关键4、(2021,0)【分析】将四分之一圆弧对应的A点坐标看作顺时针旋转90,再根据A、A1、A2、A3、A4的坐标找到规律即可【详解】A点坐标为(1,1),且A1为A点绕B点顺时针旋转90所得A1点坐标

16、为(2,0)又A2为A1点绕O点顺时针旋转90所得A2点坐标为(0,-2)又A3为A2点绕C点顺时针旋转90所得A3点坐标为(-3,1)又A4为A3点绕A点顺时针旋转90所得A4点坐标为(1,5)由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90,且半径为1、2、3、n,每次增加120214=5051故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90所得故A2021点坐标为(2021,0)故答案为:(2021,0)【点睛】本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键5、(3,1)【分析】由条件可知A点和A点关于原点对称,可求得答案

17、【详解】解:将OA绕原点O逆时针旋转180得到OA,A点和A点关于原点对称,A(3,1),A(3,1),故答案为:(3,1)【点睛】本题主要考查旋转的定义,由条件求得A和A关于原点对称是解题的关键三、解答题1、(1)见解析;(2)见解析,【分析】(1)根据关于y轴对称点的坐标特点得到A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;(2)作点A关于x轴的对称点A1,连接A1B交x轴与点P【详解】解:(1)如图ABC及A1B1C1即为所求作的图形;(2)如图点P即为所求作的点,此时点P的坐标(2,0) 【点睛】本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键2、(1)见

18、解析,(2,4);(2)见解析;(3)3.5【分析】(1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算A2BC2的面积【详解】解:(1)如图,A1B1C1为所作,点A1的坐标为(2,4);(2)如图,A2BC2为所作;(3)A2BC2的面积333121323.5【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得

19、出旋转后的图形也考查了轴对称变换3、(1)图见解析, A1(2,-5)B1(1,-1),C1(3,-2) ; (2)图见解析,A2(-2,5),B2(-1,1),C2(-3,2);(3)3.5【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得,然后写出坐标;(2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得,然后写出坐标;(3)利用割补法求解可得【详解】解:(1)如图所示,A1B1C1即为所求,A1(2,-5),B1(1,-1),C1(3,-2) ;(2)如图所示,A2B2C2即为所求,A2(-2,5),B2(-1,1),C2(-3,2);(3)ABC的面积=3.5【点

20、睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质4、(1)画图见解析,;(2)【分析】(1)根据关于轴对称的点的坐标特征写出点,的坐标,然后描点即可;(2)根据三角形面积公式,利用四边形的面积进行计算【详解】解:(1)根据题意得:点,关于轴的对称点分别为,如图,为所作;(2)四边形的面积【点睛】本题主要考查了图形的变换轴对称,坐标与图形,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段,对应角相等是解题的关键5、(1)见详解;(2)A1B1C1即为所求,见详解,(-2,1);(3)(0,3)【分析】(1)根据点A及点B的坐标,易得y轴在A的左边一

21、个单位,x轴在A的下方3个单位,建立直角坐标系即可;(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为A1B1C1;(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证GBC1为等腰直角三角形,再证PHB为等腰直角三角形,最后求出y轴交点坐标即可【详解】解:(1)点A坐

22、标为(1 ,3),点B坐标为(2 ,1)点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,如图所示:即为作出的平面直角坐标系;(2)根据图形得出出点C(4,7)ABC关于y轴对称的图形A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,A(1,3),B (2,1),C(4,7),A1(-1,3),B1(-2,1),C1(-4,7),在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),顺次连接A1B1, B1C1, C1 A1,如图所示:A1B1C1即为所求,故答案为:(-2,1);(3)如图所示:点P即为所求作的点过C1作y轴

23、平行线与过B作x轴平行线交于G,BG交y轴于H,点C的对称点为C1,连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,B(2,1),C1(-4,7),C1G=7-1=6,BG=2-(-4)=6,C1G=BG,GBC1为等腰直角三角形,GBC1=45,OHB=90,PHB为等腰直角三角形,yP-1=2-0,解得yP=3,点P(0,3)故答案为(0,3)【点睛】本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键6、(1)见解析;(2)【分析】(1)分别作A、B、C三点

24、关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用ABC所在矩形面积减去三个小三角形面积即可得答案【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,A1B1C1即为所求;(2)SABC=33=【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键7、(1)见解析;(2)A2(-2,0),B2(-1,3),C2(1,2),(3)P(m-3,-n)【分析】(1)直接利用关于轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接利用平移变换的性质得出点

25、的坐标【详解】解:(1)如图所示:就是所要求作的图形;(2)如图所示:就是所要求作的图形,其顶点坐标为A2(-2,0),B2(-1,3),C2(1,2);(3)如果上有一点经过上述两次变换,那么对应上的点的坐标是:故答案为:【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键8、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,延长交于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1

26、)轴于点,轴于点,;(2)如图2,过点作轴,交于点,轴, 在与中,即点为中点;(3)如图3,延长到,使,连接,延长交于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键9、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可【详解】解:的顶点坐标分别为,绕点顺时针旋转,得到,点A1横坐标-1+5-(-1)=5,纵坐标-1+-1-(-4)=2,A1(5,2),点B1横坐标-1+2-(-1)=2,纵坐标-1+-1-(-5)=3,B1(2,3),点C1横坐标-1+4-(-1)=4,纵坐标-1+-1-(-3)=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则A1B1C1为所求;,=,=,=2【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键10、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求A1B1C1面积【详解】(1)ABC关于原点O对称的A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁