《2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测试练习题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测试练习题(精选).docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,
2、E在同一条直线上时,则BAD的大小是()A80B70C60D502、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米3、如图,点A,B,C均在O上,连接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A22.5B45C90D67.54、下列汽车标志中既是轴对称图形又是中心对称图形的是( )ABCD5、下列四个图案中,是中心对称图形的是()ABCD6、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD7、如图,四边形ABC
3、D内接于O,若ADC=130,则AOC的度数为( )A25B80C130D1008、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D409、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)10、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若扇形的圆心角为60,半径为2,则该扇形的弧长是_(结果保留)2、已知如图,AB=8,AC=4,BAC=60,BC所在圆的圆心是点O,BOC=60,分别在、线段AB和AC
4、上选取点P、E、F,则PE+EF+FP的最小值为_3、已知一个扇形的半径是1,圆心角是120,则这个扇形的面积是_4、如图,过O外一点P,作射线PA,PB分别切O于点A,B,点C在劣弧AB上,过点C作O的切线分别与PA,PB交于点D,E则_度5、已知O、I分别是ABC的外心和内心,BIC125,则BOC的大小是 _度三、解答题(5小题,每小题10分,共计50分)1、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H(1)当直线l在如图的位置时请直接写出与之间的数量关系_请直接写出线段BH,EH,CH之间的数量关系_(2)当直线l在如图的位置
5、时,请写出线段BH,EH,CH之间的数量关系并证明;(3)已知,在直线l旋转过程中当时,请直接写出EH的长2、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:O.求作:O的内接等腰直角三角形ABC. 作法:如图,作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC= AB是直径,ACB= ( ) (
6、填写推理依据) ABC是等腰直角三角形3、如图1,在中,将边绕着点A逆时针旋转,得到线段,连接交边于点E,过点C作于点F,延长交于点G(1)求证:;(2)如图2,当时,求证:;(3)如图3,当时,请直接写出的值4、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且将线段AE绕点A逆时针旋转90,得到线段AF,连接BE,FE,连接FC并延长交BE于点G(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明5、如图1,在中,点,分别在边,上,连接,点在线段上,连接交于点(1)比较与的大小,并证明;若,求证:;(2)将图1中的绕
7、点逆时针旋转,如图2若是的中点,判断是否仍然成立如果成立,请证明;如果不成立,请说明理由.-参考答案-一、单选题1、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质2、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r
8、-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键3、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键4、C【分析】根据轴对称图形与中心对称图形的概念求解【详
9、解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、A【分析】中心对称图形是指绕一点旋转180后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的
10、识别,掌握中心对称图形的基本定义是解题关键6、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合叫作中心对称图形.7、D【分析】根据圆内接四边形的性质求出B的度数,根据圆周角定理计算即可
11、【详解】解:四边形ABCD内接于O,B+ADC=180,ADC=130,B=50,由圆周角定理得,AOC=2B=100,故选:D【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键8、B【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,
12、必连过切点的半径,构造定理图,得出垂直关系9、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键10、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】
13、本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键二、填空题1、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算【详解】解:依题意,n=,r=2,扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用关键是熟悉公式:扇形的弧长=2、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关
14、于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,当MN的值最小时,PEF的值最小,AP=AM=AN,BAM=BAP,CAP=CAN,BAC=60,MAN=120,MN=AM=PA,当PA的值最小时,MN的值最小,取AB的中点J,连接CJAB=8,AC=4,AJ=JB=AC=4,JAC=60,JAC是等边三角形,JC=JA=JB,ACB=90,BC=,BOC=60,OB=OC,OBC是等边三角形,OB=OC=BC=4,BCO=60,ACH=30,AHOH,AH=AC=2,CH=AH=2,OH=6,OA=4,当点P在直线OA上时,PA的
15、值最小,最小值为-,MN的最小值为(-)=-12故答案:-12【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题3、【分析】根据圆心角为的扇形面积是进行解答即可得【详解】解:这个扇形的面积故答案是:【点睛】本题考查了扇形的面积,解题的关键是掌握扇形的面积公式4、65【分析】连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,根据等量代换可得,代入求解即可【详解】解:如图所示:连接OA,OC,OB,PA、PB、DE与圆相切于点A、B、E,DO
16、平分,EO平分,故答案为:65【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键5、140【分析】作的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得【详解】解:如图所示,作的外接圆,点I是的内心,BI,CI分别平分和,点O是的外心,故答案为:140【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键三、解答题1、(1);(2);证明见解析;(3)或【分析】(1),根据CE=BC,四边形ABCD为正
17、方形,可得BC=CD=CE,根据CFDE,得出CF平分ECD即可;,过点C作CGBE于G,根据BC=EC,得出ECG=BCG=,根据ECH=HCD=,可得CG=HG,根据勾股定理在RtGHC中,根据GE=,得出即可;(2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;(3)或,根据,分两种情况,当ABE=90-15=75时,BC=CE,先证CDE为等边三角形,可求FEH=DEC=CEB=60-15=45,根据CFDE,得出DF=EF=1,FHE=180-HFE-FEH=45,根据勾股定理HE=,当ABE=90+15=105,可得BC=CE得出CBE=CEB=15,可求
18、FCE=,FEC=180-CFE-FCE=30,根据30直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可【详解】解:(1)CE=BC,四边形ABCD为正方形,BC=CD=CE,CFDE,CF平分ECD,ECH=HCD,故答案为:ECH=HCD;,过点C作CGBE于G,BC=EC,ECG=BCG=,ECH=HCD=,GCH=ECG+ECF=+,GHC=180-HGC+GCH=180-90-45=45,CG=HG,在RtGHC中, ,GE=, GH=GE+EH=,故答案是:;(2), 证明:过点C作交BE于点M,则,是等腰直角三角形, (3)或,分两种情况,当ABE=9
19、0-15=75时,BC=CE,CBE=CEB=15,BCE=180-CBE-CEB=180-15-15=150,DCE=BCE-BCD=150=90=60,CE=CD,CDE为等边三角形,DE=CD=AB=2,DEC=60,FEH=DEC=CEB=60-15=45,CFDE,DF=EF=1,FHE=180-HFE-FEH=45,EF=HF=1,HE=,当ABE=90+15=105,BC=CE,CBE=CEB=15,BCE=180-CBE-CEB=150,DCE=360-DCB-BCE=120,CE=BC=CD,CHDE,FCE=, FEC=180-CFE-FCE=30,CF=,EF=,HEF=
20、CEB+CEF=15+30=45,FHE=180-HFE-FEH=45=FEH,FH=FE,EH=,或【点睛】本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键2、(1)见解析;(2)BC,90,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交O于点C,D;连结AC、BC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出ACB=90即可【详解】(1)作直径AB;分别以点A
21、, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.(2)证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC=BCAB是直径,ACB=90(直径所对的圆周角是直角) ABC是等腰直角三角形故答案为:BC,90,直径所对的圆周角是直角【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键3、(1)见解析(2)见解析(3)【分析】(1)由旋转的性质得AB=AD,所以,再根据三角形内角和定理可证明即可
22、得到结论;(2)连接,根据ASA证明得,是等边三角形,从而得出,再运用AAS证明得,由勾股定理可得出,从而 可得结论;(3)证明平分,作于点,根据勾股定理得,代入求值即可(1)边绕着点逆时针旋转得到线段, 又,且AEB=CEF(2)连接在和中,(ASA),即在和中,(AAS),在中,即,是等边三角形(3),平分作于点,在中,在中,【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形4、(1)见解析;(2)(3)【分析】(1)根据题意补全图形即可;(2)根据旋转的性质可得,进而证明,可得,根据角度的转换可
23、得,进而根据三角形的外角性质即可证明;(3)过点作,证明,进而根据勾股定理以及线段的转换即可得到(1)如图,(2)将线段AE绕点A逆时针旋转90,得到线段AF,,又即(3)证明如下,如图,过点作,又,又,即【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键5、(1)CAE=CBD,理由见解析;证明见解析;(2)AE=2CF仍然成立,理由见解析【分析】(1)只需要证明CAECBD即可得到CAE=CBD;先证明CAH=BCF,然后推出BDC=FCD,CAE=CBD=BCF,得到CF=DF,CF=BF,则BD=2CF,再由CAECBD,即可得
24、到AE=2BD=2CF;(2)如图所示延长DC到G使得,DC=CG,连接BG,只需要证明ACEBCG得到AE=BG,再由CF是BDG的中位线,得到BG=2CF,即可证明AE=2CF【详解】解:(1)CAE=CBD,理由如下:在CAE和 CBD中,CAECBD(SAS),CAE=CBD;CFAE,AHC=ACB=90,CAH+ACH=ACH+BCF=90,CAH=BCF,DCF+BCF=90,CDB+CBD=90,CAE=CBD,BDC=FCD,CAE=CBD=BCF,CF=DF,CF=BF,BD=2CF,又CAECBD,AE=2BD=2CF;(2)AE=2CF仍然成立,理由如下:如图所示延长DC到G使得,DC=CG,连接BG,由旋转的性质可得,DCE=ACB=90,ACD+BCD=BCE+BCD,ECG=90,ACD=BCE,ACD+DCE=BCE+ECG,即ACE=BCG,又CE=CD=CG,AC=BC,ACEBCG(SAS),AE=BG,F是BD的中点,CD=CG,CF是BDG的中位线,BG=2CF,AE=2CF【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键