2022年最新强化训练沪科版九年级数学下册期末模拟考-卷(Ⅱ)(含答案及解析).docx

上传人:可****阿 文档编号:32521771 上传时间:2022-08-09 格式:DOCX 页数:32 大小:1.66MB
返回 下载 相关 举报
2022年最新强化训练沪科版九年级数学下册期末模拟考-卷(Ⅱ)(含答案及解析).docx_第1页
第1页 / 共32页
2022年最新强化训练沪科版九年级数学下册期末模拟考-卷(Ⅱ)(含答案及解析).docx_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《2022年最新强化训练沪科版九年级数学下册期末模拟考-卷(Ⅱ)(含答案及解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练沪科版九年级数学下册期末模拟考-卷(Ⅱ)(含答案及解析).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版九年级数学下册期末模拟考 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,都是上的点,垂足为,若,则的度数为( )ABCD2、把7个同样大

2、小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是()ABCD3、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD4、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD5、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )A2个B3个C4个D5个6、如图,AB为的直径,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )ABC3D7、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,随机抽取一个小球,是红球的概率为( )ABCD 线 封 密 内 号学

3、级年名姓 线 封 密 外 8、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A平移B翻折C旋转D以上三种都不对9、下列事件是必然发生的事件是( )A在地球上,上抛的篮球一定会下落B明天的气温一定比今天高C中秋节晚上一定能看到月亮D某彩票中奖率是1%,买100张彩票一定中奖一张10、如图,是ABC的外接圆,已知,则的大小为( )A55B60C65D75第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个盒子中装有标号为,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为_2、在平面直角坐标系中,点,圆C与x轴相切于点A

4、,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为_3、如图,在O中,弦ABOC于E点,C在圆上,AB8,CE2,则O的半径AO_4、如图,中,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是_5、如图,AB为的弦,半径于点C若,则的半径长为_ 线 封 密 内 号学级年名姓 线 封 密 外 三、解答题(5小题,每小题10分,共计50分)1、如图,已知弓形的长,弓高,(,并经过圆心O)(1)请利用尺规作图的方法找到圆心O;(2)求弓形所在的半径的长2、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与PBD的外接圆除点D以外

5、的另一个交点,直线BE与直线PD相交于点F(1)如图,当点P在线段AB上运动时,若DBE30,PB2,求DE的长;(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明3、为坚持“五育并举”,落实立德树人根本任务,教育部出台了“五项管理”举措我校对九年级部分家长就“五项管理”知晓情况作调查,A:完全知晓,B:知晓,C:基本知晓,D:不知晓九年级组长将调查情况制成了如下的条形统计图和扇形统计图请根据图中信息,回答下列问题: (1)共调查了多少名家长?写出图2中选项所对应的圆心角,并补齐条形统计图;(2)我校九年级共有450名家长,估计九年级“不知晓五项管理”举措的家

6、长有多少人;(3)已知选项中男女家长数相同,若从选项家长中随机抽取2名家长参加“家校共育”座谈会,请用列表或画树状图的方法,求抽取家长都是男家长的概率4、如图,等腰直角三角形,延长至E,使得,以为直角边作,(1)若以每秒1个单位的速度沿向右运动,当点E到达点C时停止运动,直接写出在运动过程中与重叠部分面积S与运动时间t(单位:秒)的函数关系式;(2)点M为线段的中点,当(1)中的顶点E运动到点C后,将绕着点C继续顺时针旋转得到,点P是直线上一动点,连接,求的最小值5、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园

7、四个景点的旅游宣传卡片,这些卡片的大小、形状 线 封 密 内 号学级年名姓 线 封 密 外 及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率-参考答案-一、单选题1、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对的圆周角和圆心角

8、,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键2、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意B、当7个小正方体如图分布时,符合题意,本选项不符合题意 线 封 密 内 号学级年名姓 线 封 密 外 C、没有符合题意的几何图形,本选项符合题意D、当7个小正方体如图分布时,符合题意,本选项不符合题意故选:C【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力3、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对

9、称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.4、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选

10、项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合5、A【分析】根据轴对称图形与中心对称图形的概念进行判断【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形故选:A【点睛】此题主要考查了中心对称图形与轴对称图形的概念(1)如果一个图形沿着一条直线对折后两部

11、分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴(2)如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心6、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明 线 封 密 内 号学级年名姓 线 封 密 外 ,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键7、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】解:共

12、有5个球,其中红球有2个,P(摸到红球)=,故选:A【点睛】此题主要考查概率的意义及求法用到的知识点为:概率=所求情况数与总情况数之比8、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键9、A 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案【详解】解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;B、明天的气温一定比今天的高,是随机事件,不符合题意;C、中秋节晚上一定能

13、看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意故选:A【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念关键是理解必然事件指在一定条件下一定发生的事件10、C【分析】由OA=OB,求出AOB=130,根据圆周角定理求出的度数【详解】解:OA=OB,BAO=AOB=130=AOB=65故选:C【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半二、填空题1、【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案【详解】

14、解:根据题意画图如下:共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,则摸出的小球标号之和大于5的概率为故答案为:【点睛】本题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率=所求情况数与总情况数之比2、#【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值 线 封 密 内 号学级年名姓 线 封 密 外 ,由此

15、求解即可【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点点C的坐标为(2,2),圆C与x轴相切于点A,点A的坐标为(2,0),OA=OD=2,即O是AD的中点,又M是AB的中点, OM是ABD的中位线,当BD最小时,OM也最小,当B运动到时,BD有最小值,C(2,2),D(-2,0),故答案为:【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键3、5【分析】设O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2

16、,然后解方程即可【详解】解:设O的半径为r,则OC=OA=r,OE=OC-CE=r-2,OCAB,AB=8,AE=BE=AB=4,在RtOAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即O的半径长为5,故答案为:5 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理4、【分析】如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案【详解】解:如图,过点作轴于点

17、,点作轴于点,设,则,在中,在中,解得,由旋转的性质得:,在和中,故答案为:【点睛】本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键5、5【分析】先根据垂径定理求出AC的长,设O的半径为r,再连接OA,在RtOAC中利用勾股定理求出r的值即可【详解】解:O的弦AB=8,半径ODAB, 线 封 密 内 号学级年名姓 线 封 密 外 AC=AB=8=4,设O的半径为r,则OC=r-CD=r-2,连接OA,在RtOAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助

18、线,构造出直角三角形,利用勾股定理求解是解答此题的关键三、解答题1、(1)见解析(2)10【分析】(1)作BC的垂直平分线,与直线CD的交点即为圆心;(2)连接OA,根据勾股定理列出方程即可求解(1)解:如图所示,点O即是圆心;(2)解:连接OA,并经过圆心O,解得,答:半径为10【点睛】本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径 线 封 密 内 号学级年名姓 线 封 密 外 2、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析【分析】(1)根据PBD等腰直角三角形,PB2,求出DB的长,由O是PBD的外接圆,DBE30,可得答案;(2)

19、根据同弧所对的圆周角,可得ADP=FBP,由PBD等腰直角三角形,得DPB=APD=90,DP=BP,可证APDFPB,可得答案【详解】解:(1)由题意画以下图,连接EP,PBD等腰直角三角形,O是PBD的外接圆,DPB=DEB=90,PB2, ,DBE30, (2)点P在点A、B之间,由(1)的图根据同弧所对的圆周角相等,可得:ADP=FBP,又PBD等腰直角三角形,DPB=APD=90,DP=BP,在APD和FPB中APDFPBAP=FP,AP+PB=ABFP+PB=AB,FP=AB-PB,点P在点B的右侧,如下图: 线 封 密 内 号学级年名姓 线 封 密 外 PBD等腰直角三角形,DP

20、B=APF=90,DP=BP,PBF+EBP=180,PDA+EBP=180,PBF=PDA,在APD和FPB中APDFPBAP=FP,AB+PB=AP,AB+PB=PF,PF= AB+PB综上所述,FP=AB-PB或PF= AB+PB【点睛】本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况3、(1)50,图见解析(2)36(3)【分析】(1)利用A选项的人数和A选项所占的百分数求解调查的家长人数,再由B选项所占的百分数求解B选项的人数,进而可求出D选项的人数,即可补全条形统计图,再求出D选项所占的百分数即可求得D选项所对应的圆心角;(2)根据家长总人数乘

21、以D选项所占的百分数即可求解;(3)根据(1)中求出的D选项人数可求得男女家长数,再用列表法求解即可(1)解:家长总人数:1122%=50(人),B选项人数:5040%=20(人),D选项人数:50112015=4(人),D选项所占的百分数为450=8%,D选项所对的圆心角为3608%=28.8,答:一共调查了50名家长,选项圆心角为,补全条形统计图如图: 线 封 密 内 号学级年名姓 线 封 密 外 (2)解:4508%=36(人),答:估计九年级“不知晓五项管理”举措的家长有36人;(3)解:D选项共4人,则男女家长各2人,从中抽取2人,画树状图为:由图可知,一共有12种等可能的结果,其中

22、都是男家长的有2种,抽取家长都是男家长的概率是【点睛】本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、用列表或画树状图法求概率,能从条形统计图和扇形统计图中获取有效信息是解答的关键4、(1)(2)【分析】(1)根据运动重合部分不同情况分四种情况讨论,当时,当时,当时,当时,根据三角形的面积公式求函数解析式即可(2)作关于的对称点,连接,过点作于点,过点作于点,设交于点,交于点,则的最小值即为的长,进而解直角三角形,即可求得的长,即的最小值(1)等腰直角三角形, ,在,当时,如图,重叠部分面积为,设交于点,过点作于点, 线 封 密 内 号学级年名姓 线 封 密 外 以每秒1个单位的速度

23、沿向右运动,设,则在,,即解得当时,如图,重叠部分面积为四边形的面积,设交于点,过点作于点,设交于点,当时,此时重叠面积为当时,如图,设交于点,此时重叠面积为四边形的面积, 线 封 密 内 号学级年名姓 线 封 密 外 ,综上所述,(2)如图,作关于的对称点,连接,过点作于点,过点作于点,设交于点,交于点,则在中,则的最小值即为的长在中,设,则中,为的中点,则 线 封 密 内 号学级年名姓 线 封 密 外 ,即的最小值为【点睛】本题考查了动点的函数问题,解直角三角形,(1)分类讨论,(2)转化线段是解题的关键5、(1);(2).【分析】(1)根据题意列表可得共有16种等可能的结果,其中两人抽到

24、同一景点的结果有4种,进而由概率公式求解即可;(2)根据题意列表可得共有12种等可能的结果,其中两人抽到动物园和森林公园的结果有2种,进而由概率公式求解即可【详解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情况数为16种,两人抽到同一景点的结果有4种,所以两人抽到同一景点的概率为.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种,所以两人抽到动物园和森林公园的概率为.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁