《2022年最新北师大版八年级数学下册第三章图形的平移与旋转同步测试练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版八年级数学下册第三章图形的平移与旋转同步测试练习题(含详解).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2、点P(3,2)关于原点O的对称点的坐标是()A(3
2、,2)B(3,2)C(3,2)D(2,3)3、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90得到点D的坐标为( )A(2,1)或(2,1)B(2,5)或(2,3)C(2,5)或(2,3)D(2,5)或(2,5)4、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是( )A50B60C40D305、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致下列窗户图案中,是中心对称图形的是( )ABCD6、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD7、20
3、22年2月4日2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转( )A180B120C90D608、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B轴轴对称C轴轴对称D以上都不对9、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A2B2C3D310、下列图形中,是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A(a,3)是点B(2,b)关于原点O的对称点,则a+b_2、在平面直角坐标系中点M(2,
4、4)关于原点对称的点的坐标为 _3、如图,ABC为等边三角形,D是ABC内一点,若将ABD经过旋转后到ACP位置,则旋转角等于 _度4、如图,将AOB沿x轴方向向右平移得到CDE,点B的坐标为(3,0),DB1,则点E的坐标为 _5、如图,在平面直角坐标系中,A(0,1),B(1,0),对RtABO沿轴依次作旋转变换,分别得到1,2,3,4,则20的直角顶点横坐标是_ 三、解答题(5小题,每小题10分,共计50分)1、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC(1)求证DOBAOC;(2)求CEB
5、的大小;(3)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求CEB的大小2、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,B45,C30,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角AOA(0180)(1)在旋转过程中,当为 度时,ABOC,当为 度时,ABCD;(2)如图2,将图1中的OAB以点O为旋转中心旋转到OAB的位置,求当为多少度时,OB平分COD;拓展应用:(3)当90120时,连接AD,利用图3探究BAD+BOC+ADC值的大小变化情况,并说明理由3、如图,在平面直角坐标系中,已知
6、点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 4、如图(1)将ABD平移,使点D沿BD延长线移至点C得到,交AC于点E,AD平分BAC(1)猜想EC与之间的关系,并说明理由(2)如图将ABD平移至如图(2)所示,得到,请问:平分吗?为什么?5、如图,在平面直角坐标系中,已知点A(1,5),B(3,1)和C(4,0)(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标;(2)将线
7、段AB绕点A逆时针旋转90,画出旋转后所得的线段AE,并写出点E的坐标;(3)线段MN与线段AB关于原点成中心对称,点A的对应点为点M,画出线段MN并写出点M的坐标;直接写出线段MN与线段CD的位置关系-参考答案-一、单选题1、D【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,不是中心对称图形,故本选项符合题意;D既是轴对称图形,又是中心对称图形,故本选项不符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做
8、中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键3、C【分析】分顺时针和逆时针旋转90两种情况讨论,构造全等三角形即可求解【详解】解:设点D绕着点A逆时针旋转
9、90得到点D1,分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:根据旋转的性质得DAD1=90,AD1=AD,AED1=ACD=90,D1+EAD1=90,EAD1 +DAC=90,D1=DAC,AD1EDAC,CD=AE,ED1=AC,A(0,4),B(2,0),点D为AB的中点,点D的坐标为(1,2),CD=AE=1,ED1=AC=AO-OC=2,点D1的坐标为(2,5);设点D绕着点A顺时针旋转90得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90得到点D的坐标为(-2,3)或(2,5),故选:C【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质
10、,根据平面直角坐标系确定出点D1和D2的位置是解题的关键4、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.5、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了
11、中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心6、D【详解】解:是轴对称图形,不是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;不是轴对称图形,也不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图
12、重合7、D【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60,即可解决问题【详解】解:“雪花图案”可以看成正六边形,正六边形的中心角为60,这个图案至少旋转60能与原雪花图案重合故选:D【点睛】本题考查旋转对称图形,生活中的旋转现象等知识,解题的关键是理解题意,掌握正六边形的性质8、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称故选A【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵
13、坐标都互为相反数是解答本题的关键9、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键10、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点
14、旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、5【分析】根据关于原点对称的点的特点可得a,b的值,相加即可【详解】解:点A(a,3)是点B(2,b)关于原点O的对称点,a2,b3,a+b5故答案为5【点睛】本题考查了关于原点对称的点的特点,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键2、【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解【详解】解:点M(2,4)关于原点对称的点的坐标为 故答案为:【点睛】本题主要考查了
15、两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键3、60【分析】根据题意由旋转的性质可得BAD=CAP,即可求BAC=DAP=60,即可求解【详解】解:ABC是等边三角形,BAC=60,将ABD经过一次逆时针旋转后到ACP的位置,BAD=CAP,BAC=BAD+DAC=60,PAC+CAD=60,DAP=60;故旋转角度60度.故答案为:60【点睛】本题考查旋转的性质,注意掌握变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心4、(5,0)【分析】先由点B坐标求得OB,进而求得OD,
16、根据平移性质可求得点E坐标【详解】解:点B的坐标为(3,0),OB=3,又DB1,OD=OBDB=31=2,AOB沿x轴方向向右平移得到CDE,BE=OD=2,点E坐标为(5,0),故答案为:(5,0)【点睛】本题考查坐标与图形变换-平移,熟练掌握平移变换规律是解答的关键5、【分析】先利用勾股定理计算出AB,从而得到ABC的周长为,根据旋转变换可得OAB的旋转变换为每3次一个循环,由于203=62,20与2状态相同,然后计算即可得到20的直角顶点横坐标【详解】解:A(0,1),B(1,0),OA=1,OB=1,,ABO的周长为,如图所示,作HNx轴,第1次的直角顶点的横坐标为0,第2次的直角顶
17、点的横坐标为(三线合一),第3次的直角顶点的横坐标为,以后每连续3次后与原来的状态一样,203=62,20与2状态相同,其横坐标为:故答案为:【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180解决本题的关键是确定循环的次数,属于中考选择题中的压轴题三、解答题1、(1)见详解;(2)120;(2)120【分析】(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,COD=AOB=60,则利用根据“SAS”判断AOCBOD;(2)利用AOCBOD得到CAO=DBO,然后根据三角
18、形内角和可得到AEB=AOB=60,即可求出答案;(3)如图2,与(1)的方法一样可证明AOCBOD;则CAO=DBO,然后根据三角形内角和可求出AEB=AOB=60,即可得到答案【详解】(1)证明:如图1,ODC和OAB都是等边三角形,OD=OC=OA=OB,COD=AOB=60,BOD=AOC=120,在AOC和BOD中AOCBOD;(2)解:AOCBOD,CAO=DBO,1=2,AEB=AOB=60,;(3)解:如图2,ODC和OAB都是等边三角形, OD=OC=OA=OB,COD=AOB=60,AOB+BOC=COD+BOC,即AOC=BOD,在AOC和BOD中AOCBOD;CAO=D
19、BO,1=2,AEB=AOB=60,;即CEB的大小不变【点睛】本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题2、(1)30,90;(2)105;(3)不变,理由见解析【分析】(1)根据题意作出图形,根据所给的条件求解即可;(2)由旋转的性质可得AOBAOB45,由角的数量关系可求解;(3)由可分别表示BAD,BOC,ADC再求和即可【详解】解:(1)当ABOC时,AOC+A180,A90,AOC90,AOA180906030,即30;当ABCD时,则OACD,AOAODC90,即90;故答案为:30;90(2)OAB以O为
20、中心顺时针旋转得到OAB,AOBAOB45,COD60,OB平分COD,DOB30,AOA180DOBAOB1803045105,即当为105时,OB平分COD;(3)不变,理由如下:AOA,BOD18045135,BOC60(135)75,设ADC,ADO90,BOD+ADOBAD+B,即135+90BAD+45,解得BAD180,BAD+BOC+ADC180+75+105【点睛】本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键3、(1)见解析;(2)见解析;(3)(a5,b)【分析】(1)结合直角坐标系,可找到三
21、点的位置,顺次连接即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置4、(1),见解析;(2)平分,见解析【分析】(1)由题意根据平移的性质得出BAD=DAC,BAD=A,ABAB,进而得出BA
22、C=BEC,进而得出答案;(2)根据题意利用平移的性质得出BAD=BAD,ABAB,进而得出BAD=BAC,即可得出BAD=BAC【详解】解:(1)BEC=2A,理由:将ABD平移,使点D沿BD延长线移至点C得到ABD,AB交AC于点E,AD平分BAC,BAD=DAC,BAD=A,ABAB,BAC=BEC,BAD=A=BAC=BEC,即BEC=2A.(2)AD平分BAC,理由:将ABD平移后得到ABD,BAD=BAD,ABAB,BAC=BAC.BAD=BAC, BAD=BAC,AD平分BAC.【点睛】本题主要考查平移的性质,熟练掌握并根据平移的性质得出对应角、对应边之间的关系是解题的关键5、(
23、1)作图见解析,点D的坐标为(2,-4);(2)作图见解析,点E的坐标为(3,3);(3)作图见解析,点M的坐标为(1,-5);MNCD【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90,即可画出旋转后所得的线段AE;(3)分别作出A,B的对应点M,N,连接即可;由平行线的传递性可得答案【详解】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,点E的坐标为(3,3);(3)如图所示,线段MN即为所求,点M的坐标为(1,-5);线段MN与线段AB关于原点成中心对称,MNAB,线段CD是由线段AB平移得到的,CDAB,MNCD【点睛】本题主要考查了利用平移变换和旋转变换作图,解题的关键是理解题意,灵活运用所学知识解决问题