2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(无超纲带解析).docx

上传人:可****阿 文档编号:32520927 上传时间:2022-08-09 格式:DOCX 页数:24 大小:633.88KB
返回 下载 相关 举报
2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(无超纲带解析).docx_第1页
第1页 / 共24页
2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(无超纲带解析).docx_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(无超纲带解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中不是中心对称图形的是( )ABCD2、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的

2、是( )ABCD3、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D44、下列图案中既是轴对称图形又是中心对称图形的是( )ABCD5、下列各APP标识的图案是中心对称图形的是()ABCD6、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD27、如图,以O为圆心,长为半径画弧别交于

3、A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形8、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D99、一个多边形纸片剪去一个内角后,得到一个内角和为2340的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或1710、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C

4、点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、若,则图中阴影部分的面积为_(结果保留)2、若一个多边形的内角和是外角和的倍,则它的边数是_3、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_4、菱形ABCD的周长为,对角线AC和BD相交于点O,AO:BO=1:2,则菱形ABCD的面积为_5、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内

5、壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是_m三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DEBF求证:AECF2、已知:如图,AD是BC上的高线,CE是AB边上的中线,于G(1)若,求线段AC的长;(2)求证:3、如图,已知ACB中,ACB90,E是AB的中点,连接EC,过点A作ADEC,过点C作CDEA,AD与CD交于点D(1)求证:四边形ADCE是菱形;(2)若AB8,DAE60,则ACB的面积为 (直接填空)4、(阅读材料)材料一:我们在小

6、学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值5、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF证明BE=DF-参考答案-一、单选题1、B【分析】根据中心对称

7、图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形2、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,即可判断出答案【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;B、此图形不是中心对称图形,故此选项不符合题意;C、此图形是中心对称图形,故此选项符合题意;D、此图形不是中心对称图形

8、,故此选项不符合题意故选:C【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心3、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SA

9、S),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键4、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称

10、图形和中心对称图形的定义是解答本题的关键在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形5、C【分析】根据中心对称图形的概念对各选项分析判断即可得解【详解】A、图形关于中心旋转180不能完全重合,所以不是中心对称图形,故本选项不符合题意;B、图形关于中心旋转180不能完全重合,所以不是中心对称图形,故本选项不符合题意;C、图形关于中心旋转180能完全重合,所以是中心对称图形,故本选项符合题意;D、图形关于中心旋转180不能完全重合,所以不是中心对称图形,故本选项不符合

11、题意故选:C【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、B【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90,1=2,DFG=90,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90,1+2+3+4=90,22+23=90,2+3=45,即EDG=45,EHDE,DEH=90,DEH是等腰直角三

12、角形,AED+BEH=AED+1=90,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等7、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形8、

13、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键9、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180=2340,解得:n=15,若截去一个角后边数增加1,则原多边形

14、边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180(n为边数)是解题的关键10、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=

15、42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用二、填空题1、#【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和【详解】解:四边形是矩形,图中阴影部分的面积为:故答案为:【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题

16、意,利用数形结合的思想解答2、【分析】根据多边形的内角和公式(n2)180以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)1802360,解得n6答:这个多边形的边数是6故答案为:6【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是3603、4【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出

17、阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90,NMF=180-90=90,EMF=90,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题

18、的关键4、4【分析】根据菱形的性质求得边长,根据AO:BO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解【详解】解:如图四边形是菱形,菱形ABCD的周长为, AO:BO=1:2,故答案为:4【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键5、2.5【分析】如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出AC,BC的长度,利用勾股定理求解即可【详解】解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎

19、正好在容器的顶部点A处,过点B作BCAD于C,BCD =90,四边形ADEF是矩形,ADE=DEF=90四边形BCDE是矩形,答:则壁虎捕捉蚊子的最短路程是2.5m故答案为:2.5【点睛】本题主要考查了平面展开最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求三、解答题1、见解析【分析】首先根据平行四边形的性质推出ADCB,ADBC,得到ADECBF,从而证明ADECBF,得到AEDCFB,即可证明结论【详解】证:四边形ABCD是平行四边形,ADCB,ADBC,ADECBF,在ADE和CBF中,ADECBF(SAS),AEDCFB,AECF【点睛】本题考查平行四边形的性质,以及全

20、等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键2、(1);(2)见解析【分析】(1)根据30角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可【详解】(1),;(2)连接DE,【点睛】本题考查了30角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键3、(1)见解析;(2)【分析】(1)由AD/CE,CD/AE ,得四边形AECD为平行四边形,根据直角三

21、角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;(2)由菱形的性质可得当DAE=60时,CAE=30,可求BC,再根据勾股定理求出AC,最后求面积即可【详解】解:(1),四边形是平行四边形,是的中点,四边形是菱形;(2)四边形是菱形,在Rt中, 【点睛】此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键4、(1);(2)证明;证明见解析;(3),【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG,

22、由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJ,KI,过点H作HMAD于点M,过点I作INCD于点N,则被分为9个面积相等的等腰直角三角形,即可得出【详解】解:(1);(2)证明;由题意得,在正方形ABCD中,在和中;证明:;由题意得,在正方形HIJK中,AC为正方形ABCD的对角线,在RtAHK和RtCIJ中,RtAHKRtCIJ;证明:由题意得,在正方形EBFG中,AC为正方形ABCD的对角线,在RtAEG和RtCFG中,RtAEGRtCFG;(3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,SABC=SADC=1266=18连接HJ,KI,过点H作HMAD于点M,过点I作INCD于点N,则被分为9个面积相等的等腰直角三角形,【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键5、见详解【分析】由题意易得AB=CD,ABCD,AE=CF,则有BAE=DCF,进而问题可求证【详解】证明:四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF,E,F是对角线AC的三等分点,AE=CF,在ABE和CDF中,ABECDF(SAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁