《2022中考特训:浙教版初中数学七年级下册第六章数据与统计图表定向测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022中考特训:浙教版初中数学七年级下册第六章数据与统计图表定向测评试题(含解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第六章数据与统计图表定向测评(2021-2022浙教 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列调查中,适合采用全面调查(普查)方式的是()A对綦江河水质情况的调查B对端午节期间市场上粽子质量情况的调查C对某班50名同学体重情况的调查D对某类烟花爆竹燃放安全情况的调查2、今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是( )A这1000名考生是总体的一个样本B近4万名考生是总体C每位考生的数学成绩是个体D1000名学生
2、是样本容量3、如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A该班总人数为50B步行人数为30C乘车人数是骑车人数的2.5倍D骑车人数占20%4、以下调查中,最适合采用全面调查的是( )A检测长征运载火箭的零部件质量情况B了解全国中小学生课外阅读情况C调查某批次汽车的抗撞击能力D检测某城市的空气质量5、某学校准备为七年级学生开设共6门选修课,选取了若干学生进行了我最喜欢的一门选修课调查,将调查结果绘制成了如图所示的统计图表(不完整) 选修课人数4060100下列说法不正确的是( )A这次被调查的学生人数为400人B对应扇形的圆心
3、角为C喜欢选修课的人数为72人D喜欢选修课的人数最少6、某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )A3项B4项C5项D6项7、下列调查中,适宜采用全面调查(普查)方式的是()A了解我国民众对乐天集团“萨德事件”的看法B了解湖南卫视人们的名义反腐剧的收视率C调查我校某班学生喜欢上数学课的情况D调查某类烟花爆竹燃放的安全情况8、党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,年年末全国农村贫困人口的情况如图
4、所示,根据图中提供的信息,下列说法错误的是( )A2019年末,农村贫困人口比上年末减少551万人B2012年末至2019年末,农村贫困人口累计减少超过9000万人C2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务9、如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是( )A甲比乙大B甲比乙小C甲和乙一样大D甲和乙无法比较10、今年我市有4万名考生参加中考,为了了解这些考生的数学成
5、绩,从中抽取2 000名学生的数学成绩进行统计分析,在这个问题中,下列说法:这4万名考生的中考数学成绩的全体是总体;每个考生是个体;2 000名考生是总体的一个样本;样本容量是2 000. 其中说法正确的有()A4个B3个C2个D1个二、填空题(5小题,每小题4分,共计20分)1、某兴趣班有A、B、C、D、E五个小组,如图是根据各小组人数分布绘制成的不完整统计图,则该班学生人数为_人2、如图为某市未来几天的每日最高气温与最低气温的变化趋势图,根据图中信息可知,最大的温差是_ 3、用哪种统计图反映如下信息更合适?(选填“条形图”、“扇形图”或“折线图”)(1)某学生从6岁到12岁每年一次体检的视
6、力变化情况_(2)某班40名同学穿鞋的号码数_(3)北京市各区的占地面积与全市总面积的对比情况_(4)海淀区昨天一天的气温变化情况_(5)空气的组成成分_4、折线图描述了某地某日的气温变化情况,估计这天11时的气温为_5、已知一组数据的样本容量是60,若某一小组的频数是12,则该组的频率是_三、解答题(5小题,每小题10分,共计50分)1、王叔叔准备买一台彩电,他从报纸上得知上季度甲型号的彩电销售量比乙型号彩电销售量略高于是他决定买甲型号彩电可是,到了商店以后,他观察了,发现有3人买了乙型号彩电,只有1人买了甲型号的彩电他想一定是报纸弄错了,于是也买了乙型号彩电你认为一定是报纸弄错了吗?2、(
7、1)设法收集你所在地区连续30天的空气污染指数;(2)空气质量等级划分如下:空气污染指数空气质量级别空气质量状况0到50优51到100良101到1501轻微污染151到2002轻度污染201到2501中度污染251到3002中度重污染大于300重污染根据上述划分,请将你收集到的数据制作成频数直方图3、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D舞蹈为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)木
8、次调查的学生共有 人,扇形统计图中的度数是 ;(2)请把条形统计图补充完整4、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段频数百分比80x85a20%85x9080b90x956030%95x10020 根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a= ,b= ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.5、为了秉承“弘扬剪纸非遗文化,增强校园文化底蕴”的宗旨,某校邀请剪纸艺术工
9、作室开设剪纸小课堂并举行剪纸比赛,比赛结束后从中随机抽取了20名学生的剪纸比赛成绩x,收集数据如下:成绩(分)人数(人)6554根据以上信息,解答下列问题:(1)成绩这一段的人数占被抽取总人数的百分比为_;(2)若本次共有260名学生参加比赛,请估计剪纸比赛成绩不低于70分的学生人数-参考答案-一、单选题1、C【详解】对綦江河水质情况的待查,只能是调查;对端午节期间市场上粽子质量情况的调查,和“对某类烟花爆竹燃放安全情况的调查”,根据调查的破坏性,只能是抽样调查;全面调查是所考察的全体对象进行调查. “对某班50名同学体重情况的调查”的容量较小适合采用全面调查方式;故选C2、C【分析】根据总体
10、、个体、样本、样本容量的定义对各选项判断即可【详解】解:A、1000名考生的数学成绩是样本,故本选项错误;B、4万名考生的数学成绩是总体,故本选项错误;C、每位考生的数学成绩是个体,故本选项正确;D、1000是样本容量,故本选项错误故选C3、B【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例【详解】A、总人数是:2550%=50(人),故A正确;B、步行的人数是:5030%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=2
11、0%,故D正确由于该题选择错误的,故选B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题4、A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可【详解】A.检测长征运载火箭的零部件质量情况,必须全面调查才能得到准确数据; B.了解全国中小学生课外阅读情况,量比较大,用抽样调查;C.调查某批次汽车的抗撞击能力,具有破坏性,用抽样调查; D.检测某城市的空气质量,不可能全面调查,用抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普
12、查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查5、B【分析】根据表格和扇形图,通过计算,对每个选项分别进行判断,即可得到答案.【详解】解:这次被调查的学生人数为:6015%=400(人),故A正确;D所占的百分比为:,A所占的百分比为:,E对应的圆心角为:;故B错误;喜欢选修课的人数为:(人),故C正确;喜欢选修课C有:(人),喜欢选修课E有:(人),喜欢选修课的人数为40人,是人数最少的选修课;故D正确;故选:B.【点睛】本题考查了条形统计图、扇形统计图,
13、读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据6、C【分析】获奖人次共计17+3+1+5+2+1+12+2+1=44人次,减去只获两项奖的13人计132=26人次,则剩下44-132=18人次,27-13=14人,这14人中有只获一次奖的,有获三次以上奖的【详解】解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的14人中的一人获奖最多,其余14-1=13人获奖最少,只获一项奖励,则获奖最多的人获奖项目为18-13=5项故选C【点睛】本题主要考查从统计表中获取信息的能力,解决本题的关键是要熟练掌握从统计表中获取信息的方法.7、C【解析
14、】解:A了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B了解湖南卫视人们的名义反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选C8、A【分析】用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;用2012年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断B;根据20122019年年末全国农村贫困发生率统计图,通过计算即可判断C;根据20122019年年末全国农村贫困
15、发生率统计图,即可判断D【详解】A、1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;B、2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;C、9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;D、根据20122019年
16、年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;故选:A【点睛】本题考查了条形统计图的运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据9、A【分析】由扇形统计图可知,乙党员学习文章时间的百分比是20%,再由条形统计图求出甲党员学习文章的百分比,进行比较即可【详解】由扇形统计图可知,乙党员学习文章时间的百分比是20%,由条形统计图求出甲党员学习文章的百分比是15(15+30+10+5)25%,所以甲党员的百分比比乙党员的百分比大故选A【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂
17、统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小10、C【详解】试题解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000故正确的是故选C【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象总体、个体与样本的考查对象是相同的,所不同的是范围的大小样本容量是样本中包含的个体的数目,不能带单位二、填空题1、50【分析】根据A组人数和所占的百分比,可以计算出该班学生人数【
18、详解】解:510%=50(人),即该班学生有50人,故答案为:50【点睛】本题考查了条形统计图、扇形统计图,掌握条形统计图与扇形统计图的特点并能读懂统计图中的相关信息是解题的关键2、10【分析】求出每天的最高气温与最低气温的差,再比较大小即可【详解】解:由折线统计图可知,15日温差4(3)7;16日温差4(6)10;17日温差2(6)8;18日温差2(2)4;19日温差1(5)6;20日温差1(1)2;最大的温差是10故答案为:10【点睛】本题考查了折线统计图的应用以及有理数的减法,掌握有理数减法法则是解答本题的关键有理数减法法则:减去一个数,等于加上这个数的相反数3、折线图 条形图 扇形图
19、折线图 扇形图 【分析】根据统计图的特点,选用合适的统计图即可,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;折线统计图适合表示出变化情况【详解】(1)某学生从6岁到12岁每年一次体检的视力变化情况,适合使用折线图;(2)某班40名同学穿鞋的号码数,适合使用条形图(3)北京市各区的占地面积与全市总面积的对比情况,适合使用扇形图;(4)海淀区昨天一天的气温变化情况,适合使用折线图;(5)空气的组成成分,适合使用扇形图故答案为:折线图;条形图;扇形图;折线图;扇形图【点睛】本题考查了条形统计图,折线统计图,扇形统计图的特点,根据实际情况选用合适的统计图是解题的关
20、键4、28.5【分析】读懂统计图回答问题,从图上可看出11时的气温估计是28.5左右【详解】解:根据图示可知:11时的气温估计是28.5左右故答案是:28.5【点睛】本题考查了折线统计图的知识,解答本题的关键是同学们能看懂折线统计图5、【分析】根据频数、频率之间的关系即可求得,频数:一组数据中落在某个小组内数据的个数称为这个组的频数,频率:如果一组数据共有 个,而其中某一组数据是个,那么就是该组数据在这组数据中出现的频率,即每一组数据频数与数据总数的比叫做这一组数据的频率【详解】样本容量是60,若某一小组的频数是12,则该组的频率是故答案为:0.2【点睛】本题考查了频率的定义以及频率的计算,掌
21、握概念是解题的关键三、解答题1、不能认为一定是报纸弄错,见解析【分析】抽样调查时,既要关注样本的广泛性,又要关注样本的代表性,据此即可回答【详解】解:不能认为一定是报纸弄错了因为对一个季度销售量的统计结果比在一个商场观察的统计结果更可靠人数太少,不具有广泛性【点睛】本题考查了抽样调查的可靠性,抽样调查时,既要关注样本的广泛性,又要关注样本的代表性,样本太少时,就不具有广泛性,调查结果就不准确2、(1)见解析;(2)见解析【分析】(1)调查本地区连续30天的空气污染指数即可;(2)根据所调查的数据填好频数分布表,进而即可画出相应的频数分布直方图【详解】解:(1)本地区连续30天的空气污染指数如下
22、:32,41,53,37,33,34,38,34,52,47,45,32,27,22,38,52,63,39,32,29,21,30,48,42,45,39,36,25,27,36;(2)频数分布表如下:空气污染指数天数0到502651到1004频数分布直方图如下:【点睛】本题考查了画频数分布表以及频数分布直方图的能力,利用所调查的数据画出相应的频数分布表是解决本题的关键3、(1);(2)画图见解析【分析】(1)由B组8人,占比20%,列式可得总人数,由C组的占比乘以可得圆心角的度数;(2)先计算出C组的人数,再补全图形即可.【详解】解:(1)由B组8人,占比20%,可得总人数为:人,所以C组
23、所在扇形的圆心角为: 故答案为: (2)C组的人数为:人,补全图形如下:【点睛】本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.4、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数【详解】解:(1)抽查的学生总数为:(人),;,故答案为:40;40%
24、;(2)成绩在的学生人数所占百分比为:,故频数分布表为:分数段频数百分比80x854020%85x908040%90x956030%95x1002010%频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:(人),答:估计该校参加此次活动获得一等奖的人数是100人【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键5、(1);(2)182人.【分析】(1)由题意根据图表得出成绩这一段的人数,进而除以抽取总人数即可得到答案;(2)根据题意先得出抽取的成绩不低于70分的学生人数并得出其所占百分比,进而乘以260即可得出答案.【详解】解:(1)根据图表可得成绩这一段的人数为:6人,所以成绩这一段的人数占被抽取总人数的百分比为:,故答案为:;(2)根据图表可得成绩不低于70分的学生人数为:(人),所以剪纸比赛成绩不低于70分的学生人数为:(人).答:剪纸比赛成绩不低于70分的学生人数有182人【点睛】本题考查数据的分析与处理,熟练掌握用样本估计总体的统计思想方法是解题的关键