2021-2022学年度沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析).docx

上传人:可****阿 文档编号:32514382 上传时间:2022-08-09 格式:DOCX 页数:34 大小:1.18MB
返回 下载 相关 举报
2021-2022学年度沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析).docx_第1页
第1页 / 共34页
2021-2022学年度沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《2021-2022学年度沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有两边相等的三角形的两边长为,则它的周长为( )ABCD或2、如图,是等边三角形,点在边上,则的度数为( )A

2、25B60C90D1003、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )ABCD4、如图,点E在线段AB上,则的度数为()A20B25C30D405、尺规作图:作角等于已知角示意图如图所示,则说明的依据是( ) ASSSBSASCASADAAS6、如图,在RtABC中,ACB90,BAC40,直线ab,若BC在直线b上,则1的度数为()A40B45C50D607、如图,ABAC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定ABEACD的是( )ABCBADAECBECDDAEBADC8、在ABC中,A

3、=50,B、C的平分线交于O点,则BOC等于( )A65B80C115D509、下列各条件中,不能作出唯一的的是( )A,B,C,D,10、如图,在和中,连接,交于点,连接下列结论:;平分;平分其中正确的个数为( )A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC的面积是12,AB=AC=5,AD是BC边上的中线,E,P分别是AC,AD上的动点,则CP+EP的最小值为_2、如图,在中,已知点分别为的中点,若的面积为,则阴影部分的面积为 _ 3、如图,在ABC中,点D为BC边的中点,点E为AC上一点,将C沿DE翻折,使点C落在AB上的点F

4、处,若AEF=50,则A的度数为_4、如图,ADBC,1B,C=65,BAC_5、如图,已知,点,在射线ON上,点,在射线OM上,均为等边三角形,若,则的边长为_的边长为_三、解答题(10小题,每小题5分,共计50分)1、如图,在中,AD平分,于点E求证:2、如图,将ABC绕点A逆时针旋转得到ADE,点D在BC上,已知B70,求CDE的大小3、如图,RtACB中,ACB90,ACBC,E点为射线CB上一动点,连结AE,作AFAE且AFAE(1)如图1,过F点作FDAC交AC于D点,求证:FDBC;(2)如图2,连结BF交AC于G点,若AG3,CG1,求证:E点为BC中点(3)当E点在射线CB上

5、,连结BF与直线AC交子G点,若BC4,BE3,则 (直接写出结果)4、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,(1)求证:;(2)若,求BE的长5、如图,在中,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F(1)求证:;(2)若,则_度6、如图,在中,AD是BC边上的高,CE平分,若,求的度数7、如图,在等边ABC中,点P是BC边上一点,BAP(3060),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE(1)依题意补全图形,并直接写出AEB的度数;(2)用等式表示线段AE,BE,CE之间的数量关系

6、,并证明分析:涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质通过截长补短,利用60角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的请根据上述分析过程,完成解答过程8、在等边中,D、E是BC边上两动点(不与B,C重合)(1)如图1,求的度数;(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF依题意将图2补全;求证:9、如图,在中,是角平分线,(1)求的度数;(2)若,求的度数10、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:已知:AOB求作:AOB,使AOBAOB作图:(1)以O为圆心,任意

7、长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D;(4)过点D画射线OB,则AOBAOB请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案写在相应的横线上)证明:由作图可知,在OCD和OCD中,OCD ,AOBAOB(2)这种作一个角等于已知角的方法依据是 (填序号)AAS;ASA;SSS;SAS-参考答案-一、单选题1、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【详解】解:当4为底

8、时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是或故选:D【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论2、D【分析】由等边三角形的性质及三角形外角定理即可求得结果【详解】是等边三角形C=60ADB=DBC+C=40+60=100故选:D【点睛】本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键3、B【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质

9、依次推理即可得出结论【详解】解:由三角形内角和知BAC=180-2-1,AE为BAC的平分线,BAE=BAC=(180-2-1)AD为BC边上的高,ADC=90=DAB+ABD又ABD=180-2,DAB=90-(180-2)=2-90,EAD=DAB+BAE=2-90+(180-2-1)=(2-1)故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系4、C【分析】根据全等三角形的性质可证得BC=CE,ACB=DCE即ACD=BCE,根据等腰三角形的性质和三角形的内角和定理求解B=BEC和BCE即可【详解】

10、解:,BC=CE,ACB=DCE,B=BEC,ACD=BCE,ACD=BCE=180275=30,故选:C【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键5、A【分析】利用基本作图得到ODOCODOC,CDCD,则根据全等三角形的判定方法可根据“SSS”可判断OCDOCD,然后根据全等三角形的性质得到AOBAOB【详解】解:由作法可得ODOCODOC,CDCD,所以根据“SSS”可判断OCDOCD,所以AOBAOB故选:A【点睛】本题考查了作图基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的

11、判定定理6、C【分析】根据三角形内角和定理确定,然后利用平行线的性质求解即可【详解】解:,故选:C【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键7、C【分析】根据全等三角形的判定定理进行判断即可【详解】解:根据题意可知:ABAC,若,则根据可以证明ABEACD,故A不符合题意;若ADAE,则根据可以证明ABEACD,故B不符合题意;若BECD,则根据不可以证明ABEACD,故C符合题意;若AEBADC,则根据可以证明ABEACD,故D不符合题意;故选:C【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键8、C【分析】根据题意

12、画出图形,求出ABC+ACB =130,根据角平分线的定义得到CBD=ABC,ECB=ACB,再根据三角形内角和定理和角的代换即可求解【详解】解:如图,A=50,ABC+ACB=180-A=130,BD、CE分别是ABC、ACB的平分线,CBD=ABC,ECB=ACB,BOC=180-CBD-ECB=180-(CBD+ECB)=180- (ABC+ACB)=180- 130=115故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键9、B【分析】根据三角形全等的判定及三角形三边关系即可得出结果【详解】解:A、,不能组成三

13、角形;B、根据不可以确定选项中条件能作出唯一三角形;C、根据可以确定选项中条件能作出唯一三角形;D、根据可以确定选项中条件能作出唯一三角形;故答案为:B【点睛】本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解10、C【分析】由全等三角形的判定及性质对每个结论推理论证即可【详解】又,故正确由三角形外角的性质有则故正确作于,于,如图所示:则,在和中,在和中,平分故正确假设平分则即由知又为对顶角在和中,即AB=AC又故假设不符,故不平分故错误综上所述正确,共有3个正确故选:C【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从

14、判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路二、填空题1、【分析】作BMAC于M,交AD于P,根据等腰三角形的性质得到ADBC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BEBM,根据数据线的面积公式即可得到结论【详解】解:作BMAC于M,交AD于P,ABC是等腰三角形,AD是BC边上的中线,ADBC,AD是BC的垂直平分线,点B,C关于AD为对称,BP=

15、CP,根据垂线段最短得出:CP+EP=BP+EP=BEBM,AC=BC=5,SABC=BCAD=ACBM=12,BM=AD=,即EP+CP的最小值为,故答案为:【点睛】本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键2、1【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答【详解】解:点E是AD的中点,SABESABD,SACESADC,SABESACESABC42cm2,SBCESABC42cm2,点F是CE的中点,SBEFSBCE21cm2故答案为:1【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为

16、等底等高的三角形的面积相等3、65度【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,EFD=C,得到DF=BD,根据等腰三角形的性质得到BFD=B,由三角形的内角和和平角的定义得到A=AFE,于是得到结论【详解】解:点D为BC边的中点,BD=CD,将C沿DE翻折,使点C落在AB上的点F处,DF=CD,EFD=C,DF=BD,BFD=B,A=180-C-B,AFE=180-EFD-DFB,A=AFE,AEF=50,A=(180-50)=65故答案为:65【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键4、70【

17、分析】先根据ADBC可知ADBADC90,再根据直角三角形的性质求出1与DAC的度数,由BAC1+DAC即可得出结论【详解】ADBC,ADBADC90,DAC906525,1B45,BAC1+DAC45+2570【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180是解答此题的关键5、2a 2n1a 【分析】利用等边三角形的性质得到A1OB1A1B1O30,OA1A1B1A2B1a,利用同样的方法得到A2OA2B22a21a,A3B3A3O2A2O422a,利用此规律即可得到AnBn2n1a【详解】解:A1B1A2为等边三角形,MON30,A1OB1A1B1O30,OA1A1B1A

18、2B1a,同理:A2OA2B2221a,A3B3A3O2A2O4a22a,以此类推可得AnBnAn+1的边长为AnBn2n1a故答案为:2a;2n1a【点睛】本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律三、解答题1、证明见解析.【分析】延长CE交AB于F,求出AECAEF,FAECAE,根据ASA证FAECAE,推出ACEAFC,根据三角形外角性质得出AFCBECD,代入即可【详解】证明:延长CE交AB于F,CEAD,AECAEF,AD平分BAC,FAECAE,在FAE和CAE中, ,FAECAE(ASA),ACEAFC,AFCBECD,ACEBECD【点

19、睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出AFCACE2、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把ABC绕点A逆时针旋转得到ADE,B70, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.3、(1)证明见解析;(2)证明见解析;(3)或【分析】(1)证明AFDEAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;(2)作FDAC于D,证明FDGBCG,得到DG=CG,求出CE,CB的长,得到答案;(3)过F作FDAG的延长线交于点D,根据全等三角形的

20、性质得到CG=GD,AD=CE=7,代入计算即可【详解】(1)证明:FDAC,FDA=90,DFA+DAF=90,同理,CAE+DAF=90,DFA=CAE,在AFD和EAC中,AFDEAC(AAS),DF=AC,AC=BC,FD=BC;(2)作FDAC于D,由(1)得,FD=AC=BC,AD=CE,在FDG和BCG中,FDGBCG(AAS),DG=CG=1,AD=2,CE=2,BC=AC=AG+CG=4,E点为BC中点;(3)当点E在CB的延长线上时,过F作FDAG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:ADFECA,GDFGCB,CG=GD,AD=CE=7

21、,CG=DG=1.5,AG=CG+AC=5.5,同理,当点E在线段BC上时,AG= AC -CG+=2.5,故答案为:或【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键4、(1)见解析(2)【分析】(1)利用是的外角,以及证明即可(2)证明,可知,从而得出答案(1)证明:是的外角,又,(2)解:在和中,【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键5、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到BACBBCF,由AD是角平分线,得到BDCD,证BDECDF即可;(2)根据全等

22、三角形的性质得到DEDFDA,根据求得DAB,进而求出B的度数即可【详解】(1)证明:,BACB,CB是的平分线,ACBBCF,BBCF,AD是角平分线,ABAC,BDCD,BDECDF,BDECDF(AAS);(2)BDECDF;EDFD,,EDAD,BACBBCF23,故答案为:46【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算6、85【分析】由高的定义可得出ADBADC90,在ACD中利用三角形内角和定理可求出ACB的度数,结合CE平分ACB可求出ECB的度数由三角形外角的性质可求出AEC的度数,【详解】解:AD是BC边上的高,A

23、DBADC90在ACD中,ACB180ADCCAD180902070CE平分ACB,ECBACB35AEC是BEC的外角,AECB+ECB50+3585答:AEC的度数是85【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出ECB的度数是解题的关键7、(1)图见解析,AEB60;(2)AEBECE,证明见解析【分析】(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,AEC=AEB,求出,即可求出,再由进行求解即可;(2)如图,在AE上截取EGBE,连接BG先证明BGE是等边三角形,得

24、到BGBEEG,GBE60 再证明ABGCBE,即可证明ABGCBE得到AGCE,则AEEGAGBECE【详解】解:(1)依题意补全图形,如图所示:连接AD,ABC是等边三角形,BAC=60,AB=AC,B、D关于AP对称,AD=AB=AC,AEC=AEB,AEB60 (2)AEBECE 证明:如图,在AE上截取EGBE,连接BGAEB60,BGE是等边三角形,BGBEEG,GBE60 ABC是等边三角形,ABBC,ABC60,ABGGBCGBCCBE60,ABGCBE 在ABG和CBE中,ABGCBE(SAS),AGCE,AEEGAGBECE【点睛】本题主要考查了全等三角形的性质,等边三角形

25、的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键8、(1);(2)作图见解析;证明见解析【分析】(1)等边三角形中,由知,进而求出的值;(2)作图见详解; ,点E,F关于直线对称,为等边三角形,进而可得到【详解】解:(1)为等边三角形(2)补全图形如图所示,证明:为等边三角形 ,点E,F关于直线对称,即为等边三角形【点睛】本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质解题的关键在于角度的转化9、(1);(2)【分析】(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;(2)根据垂直得出,然后根据三角形内角和定理即可得(1)解:,AD是角平分线,;(2),【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键10、(1)CD,OD,OCD,(2)【分析】(1)根据SSS证明DOCDOC,可得结论;(2)根据SSS证明三角形全等(1)证明:由作图可知,在DOC和DOC中,OCDOCD(SSS),AOBAOB故答案为:CD,OD,OCD,(2)解:上述证明过程中利用三角形全等的方法依据是SSS,故答案为:【点睛】本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁