2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明课时练习试题(含详细解析).docx

上传人:可****阿 文档编号:32512591 上传时间:2022-08-09 格式:DOCX 页数:27 大小:608.50KB
返回 下载 相关 举报
2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明课时练习试题(含详细解析).docx_第1页
第1页 / 共27页
2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明课时练习试题(含详细解析).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明课时练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明课时练习试题(含详细解析).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第一章三角形的证明课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,CAB的角平分线AD交BC于D,于E,且,则BC的长是( )A6cmB4cmC10cmD以上

2、都不对2、下列命题是真命题的是( )A等腰三角形的角平分线、中线、高线互相重合B一个三角形被截成两个三角形,每个三角形的内角和是90度C有两个角是60的三角形是等边三角形D在ABC中,则ABC为直角三角形3、如图,在ABC中,点D为边AB的中点,点P在边AC上,则周长的最小值等于( )ABCD4、如图,在三角形,是上中点,是射线上一点是上一点,连接,点在上,连接,则的长为( )AB8CD95、等腰三角形的一个角是80,则它的一个底角的度数是( )A50B80C50或80D100或806、下列各组线段中,能构成直角三角形的一组是( )A5,9,12B7,12,13C30,40,50D3,4,67

3、、已知等腰三角形的两条边长分别为4和9,则它的周长为( )A17B22C23D17或228、如图,RtABC中,B90,点P在边AB上,CP平分ACB,PB3cm,AC10cm,则APC的面积是( )A15cm2B22.5cm2C30cm2D45cm29、如图,在RtABC中,C90,A的平分线交BC于点D,过点C作CGAB于点G,交AD于点E,过点D作DFAB于点F下列结论:BACG;CEDF;CEDCDE;SAEC:SAEGAC:AG上述结论中正确的个数是()A4个B3个C2个D1个10、下列命题是假命题的是( )A直角三角形两锐角互余B有三组对应角相等的两个三角形全等C两直线平行,同位角

4、相等D角平分线上的点到角两边的距离相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平分,为上的任意一点,交于点,于点,若,则的长为_2、如图,在等腰RtABC中,ABC90,点D为AC上的一点,AD3CD3,连接BD,作等腰RtBDE,且EBD90,则线段DE的长为_3、如图,点是上的一点,则下列结论:;,其中成立的有_个4、如图,在ABC中,为边上的垂直平分线,若点D在直线上,连接,则周长的最小值为_5、如图,正三角形ABC中,D是AB的中点,于点E,过点E作与BC交于点F若,则的周长为_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xO

5、y中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称(1)当t =-3时,点N的坐标为 ;(2)以MN为底边作等腰三角形MNP当t =1且直线MP经过原点O时,点P坐标为 ;若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)2、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标 3、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:D

6、ECBAE;(2)如图2,当BAECAD30,ADAB时,延长DE、AB交于点G,请直接写出图中除ABE、ADC以外的等腰三角形4、已知:在ABC中,AD平分BAC,AE=AC求证:ADCE5、在长方形ABCD中,截取如图所示的阴影部分,已知EC5,CF5,FG4,EG3,EGF90(1)连接EF,求证:FEC90;(2)求出图中阴影部分的面积-参考答案-一、单选题1、A【分析】由角平分线的性质得CD=DE=2,等量代换后求出BC的长【详解】解:AD平分CAB,DEAB于E,C=90,CD=DE=2,又,BC=BD+CD=4+2=6(cm);故选:A【点睛】本题考查角平分线的性质的应用,熟练掌

7、握角平分线的性质在实际问题中的应用,等量代换是解题关键2、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180,故此选项错误;C.有两个角是60,则第三个角为,所以三角形是等边三角形,故此选项正确;D.设,则,故,解得,所以,此三角形不是直角三角形,故此选项错误故选:C【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键3、C【分析】作点B关于AC的对称点H,连接HP、HD,由轴对称的

8、性质可知,由题意易得,则有,然后由三角形周长公式可知,要使其最小,则需满足H、P、D三点共线即可,进而问题可求解【详解】解:作点B关于AC的对称点H,连接HP、HD,如图所示:,点D为边AB的中点,(SAS),要使其最小,则需满足H、P、D三点共线,即的最小值为HD的长,的周长最小值为;故选C【点睛】本题主要考查轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键4、D【分析】延长EA到K,是的AK=AG,连接CK,先由勾股定理的逆定理可以得到ABC是等腰直角三角形,BAC=90,ACB=ABC=45

9、,由BF=FE,得到FBE=FEB,设BFE=x,则,然后证明CB=FC=FE,得到FBC=FCA,AFB=AFC则,即可证明,推出;设,证明ABGACK,得到,即可推出ECK=K,得到EK=EC,则,由此即可得到答案【详解】解:延长EA到K,是的AK=AG,连接CK,在三角形,ABC是等腰直角三角形,BAC=90,ACB=ABC=45,BF=FE,FBE=FEB,设BFE=x,则,H是BC上中点,F是射线AH上一点,AHBC,AH是线段BC的垂直平分线,FAC=45,CB=FC=FE,FBC=FCA,AFB=AFC,设,AG=AK,AB=AC,KAC=GAB=90,ABGACK(SAS),E

10、CK=K,EK=EC,故选D【点睛】本题主要考查了勾股定理和勾股定理的逆定理,等腰三角形的性质与判定,线段垂直平分线的性质与判定,全等三角形的性质与判定,三角形内角和定理等等,熟知相关知识是解题的关键5、C【分析】已知给出一个角的的度数为80,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可【详解】解:等腰三角形的一个角是80,当80为底角时,它的一个底角是80,当80为顶角时,它的一个底角是,则它的一个底角是50或80故选:C【点睛】本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键6、C【分析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的

11、平方和等于最大数的平方即可【详解】解:A、52+92122,该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;B、72+122132,该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;C、302+402=502,该组线段符合勾股定理的逆定理,故是直角三角形,故符合题意;D、32+4262,该组线段不符合勾股定理的逆定理,故不是直角三角形,故不符合题意;故选:C【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断7、B【分析】题目给出等腰三角形有两条边长

12、为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:(1)如果腰长为4,则三边是:4,4,9;不满足三角形两边之和大于第三边的性质,不成立;(2)如果腰长为9,则三边是:4,9,9;满足三角形两边之和大于第三边的性质,成立;周长=9+9+4=22故选:B【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键8、A【分析】过点P作PDAC于D,由角平分线的性质可得PD=PB=3cm,然后利用三角形面积公式求解

13、即可【详解】解:如图所示,过点P作PDAC于D,CP平分ACB,B=90,PDAC,PD=PB=3cm,故选A【点睛】本题主要考查了角平分线的性质,三角形面积,熟知角平分线上的点到角两边的距离相等是解题的关键9、A【分析】由CGAB于点G得到CAB+ACG90,然后由C90得到CAB+B90,从而得到BACG,正确;由AD平分BAC得到CADBAD,从而得到CDE90CAD,由CGAB得到AEG90BAD,从而得到AEGCDE,然后结合对顶角相等得到CEDCDE,正确;然后得到CECD,再由AD平分BAC,C90,DFAB得到CDDF,即可得到CEDF,正确;过点E作EHAC于点H,则EHEG

14、,然后得到SAEC,SAEG,从而得到SAEC:SAEGAC:AG,正确【详解】解:CGAB,CGA90,CAB+ACG90,C90,CAB+B90,BACG,故正确;AD平分BAC,CADBAD,C90,CGA90,CDE90CAD,AEG90BAD,AEGCDE,CEDCDE,故正确;CECD,AD平分BAC,C90,DFAB,CDDF,CEDF,故正确;如图,过点E作EHAC于点H,则EHEG,SAEC,SAEG,SAEC:SAEGAC:AG,故正确;正确的个数是4个,故选:A【点睛】本题考查了三角形的内角和定理、角平分线的性质定理、等腰三角形的性质,解题的关键是熟知直角三角形的两个锐角

15、互余10、B【分析】根据直角三角形的性质,全等三角形的判定方法,平行线的性质,角平分线的性质逐项分析【详解】A.直角三角形两锐角互余,正确,是真命题;B.有三组对应角相等的两个三角形,因为它们的边不一定相等,所以不一定全等,故错误,是假命题;C.两直线平行,同位角相等,正确,是真命题;D.角平分线上的点到角两边的距离相等,正确,是真命题;故选B【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理二、填空题1、3【分析】过点作于,根据角平分线上的点到角的两边距离相等可得,根据角平分线的定义可得,根据两直线平行,内错

16、角相等可得,两直线平行,同位角相等可得,再求出,根据等角对等边可得,然后根据直角三角形角所对的直角边等于斜边的一半可得【详解】解:如图,过点作于,平分,平分,故答案为:3【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,等边对等角,掌握含30度角的直角三角形的性质是解题的关键2、【分析】先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,从而可得,然后在中,利用勾股定理即可得【详解】解:是等腰三角形,且,是等腰三角形,且,在和中,则在中,故答案为:【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质、勾股定理,正确找出两个全等三角形是解题关键3、1【分析】根据,得出

17、AC=EBBC,可判断;根据,可得ADC=ECB,得出ADBC,根据BC与BE相交,可判断;根据,得出ADC=ECB,根据直角三角形两锐角互余得出ADC+ACD=90,利用等量代换得出ECB+ACD=90可判断;,得出AD=EC,DC=CB,根据线段和AD+DE=EC+DE=DC=CBBE,可判断即可【详解】解:点是上的一点,AC=EBBC,故不正确;,ADC=ECB,ADBC,BC与BE相交,故不正确;,ADC=ECB,ADC+ACD=90,ECB+ACD=90即ACB=90,故正确;,AD=EC,DC=CB,AD+DE=EC+DE=DC=CBBE,故不正确;其中成立的有1个故答案为1【点睛

18、】本题考查全等三角形的性质,直角三角形两锐角互余,线段和差,平行线判定,掌握全等三角形的性质,直角三角形两锐角互余,线段和差,平行线判定是解题关键4、12【分析】由垂直平分线的性质得出BDCD,判断出AD+CD有最小值时即为AC的长时,周长的最小【详解】解:连接CD,如图,为边上的垂直平分线,BDCD,周长AB+BD+ADAB+CD+AD,当AD+CD有最小值时,周长的最小,当A、D、C在一条直线上时,AD+CD有最小值,此时AD+CD最小值为AC的长,周长的最小值为AB+AC的值,周长的最小值为5+712故答案为:12【点睛】本题考查了垂直平分线的性质和三角形的周长,正确理解垂直平分线上的点

19、到两端点的距离相等是解题的关键5、18【分析】利用正三角形ABC以及平行关系,求出是等边三角形,在中,利用含角的直角三角形的性质,求出的长,进而得到长,最后即可求出的周长【详解】解:是等边三角形,为等边三角形,由于D是AB的中点,故,,在中,,故答案为:18【点睛】本题主要是考查了等边三角形的判定及性质、含角的直角三角形的性质,熟练地综合应用等边三角形和含角的直角三角形的性质求解边长,是解决该题的关键三、解答题1、(1)(2,-1);(2)(-2,1);ta+2或t-a-2【分析】(1)先求出对称轴,再表示N点坐标即可;(2)以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与

20、y=1的交点即为所求;表示出M、N、P的坐标,比较纵坐标的绝对值即可【详解】(1)过点(0,t)且垂直于y轴的直线解析式为y=t点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称可以设N点坐标为(2,n),且MN中点在y=t上,记得点N坐标为当t =-3时,点N的坐标为(2)以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称点P在直线y=t上,且P是直线OM与y=1的交点当t =1时M(2,-1),N(2,3)OM直线解析式为当y=1时,P点坐标为(-2,1)由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为,MNP上所有点到x轴的距离都不小于a只需

21、要或者当M、N、P都在x轴上方时,此时,解得ta+2当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;当M、N、P都在x轴下方时,此时,解得t-a-2综上ta+2或t-a-2【点睛】本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型2、(1)见解析;(2)(0,)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-

22、OP2=OB2,进而可得OP的长,得点P的坐标【详解】解:(1)如图,点P即为所求;(2)A的坐标(0,6),点B的坐标(3,0),OA=6,OB=3,PA=PB=OA-OP=6-OP,PB2-OP2=OB2,(6-OP)2-OP2=32,解得OP=,点P的坐标为(0,)【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质3、(1)见解析;(2)AEF、ADG、DCF、ECD【分析】(1)根据已知条件得到BAECAD,根据全等三角形的性质得到AEDABC,根据等腰三角形的性质得到ABCAEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结

23、论【详解】证明:(1)如图1,BAECAD, BAECAECADCAE,即BACEAD,在AED与ABC中,AEDABC,AEDABC,BAEABCAEB180,CEDAEDAEB180,ABAE,ABCAEB,BAE2AEB180,CED2AEB180,DECBAE;(2)解:如图2, BAECAD30,ABCAEBACDADC75,由(1)得:AEDABC75,DECBAE30,ADAB,BAD90,CAE30,AFE180307575,AEFAFE, AEF是等腰三角形, BEGDEC30,ABC75,G45,在RtAGD中,ADG45,ADG是等腰直角三角形, CDF754530,DC

24、FDFC75,DCF是等腰直角三角形;CEDEDC30,ECD是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键4、见解析【分析】先根据角平分线的定义得到BAD=BAC,再根据等腰三角形的性质和三角形外角定理得到E=BAC,从而得到BAD=E,即可证明ADCE【详解】解:AD平分BAC,BAD=BAC,AE=AC,E=ACE,E+ACE=BAC,E=BAC,BAD=E,ADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键5、(1)见解析;(2)【分析】(1)先求EF,再利用勾股定理的逆定理得出EFC为直角三角形,即可得证;(2)先求出和的面积,再利用得出阴影部分的面积【详解】解:(1)EGF90,根据勾股定理得:EF=,EFC为直角三角形,FEC=90;(2),【点睛】本题考查了勾股定理及其逆定理,灵活运用勾股定理是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁