《实变函数与泛函分析基础第二版 程其襄第11章课后习题答案.doc》由会员分享,可在线阅读,更多相关《实变函数与泛函分析基础第二版 程其襄第11章课后习题答案.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第十一章 线性算子的谱1 设。证明,且其中没有特征值。证明 当时,常值函数1不在的值域中,因此不是满射,这样。反之若,定义算子。则由于,且因此是C0,1中有界线性算子。易验证,所以。总之, 若,则对任意,可推得。由于,必有,所以A无特征值。证毕。2 设,证明。证明 对任意。因为常值函数1不在的值域中,因此。这样。反之,若,定义。类似第1题可证是有界线性算子,且。即。因此。证毕。3 设, 试求。解 对任意,若,定义,显然,因此的点都是A的点谱,由于是闭集,则。对任意,显然,因此,所以。这样我们就证明了。4 设F是平面上无限有界闭集,是F的一稠密子集,在中定义算子T:则都是特征值,中每个点是T的连
2、续谱。证明 对任意n,其中1在第n个坐标上。由题设,因此是T的特征值。又由于是闭集,所以。若,则。定义算子,若,易验证,且。因此。若,且,使。则对任意n,。由于,则,。这样x=0,因此不是特征值,而是连续谱。证毕。5 设为线性算子的特征值,则的n次根中至少有一个是算子A的特征值。证明 设是的特征值,的n次根为。存在,使,则。若,则就是A的特征值,否则必有某i,而,则是A的特征值。证毕。6 设A为Banach空间X上的有界线性算子,又设为X上一列有界线性算子,且,证明当n充分大后,也以为正则点。证明 。当n充分大时,这样 是可逆的。此可逆性由本章2定理1可证,又也是可逆的。因此当n充分大后,也可
3、逆。证毕。7 设A是为Banach空间X上的有界线性算子,则当时,。证明 当时幂级数收敛,因此级数必按算子数收敛。这就证明了,。 证毕。8 设A为X上的有界线性算子,则。其中与的意义同第7题。证明 在等式两边左乘右乘得。因此,证毕。9 设A是Hilbert空间H上的有界线性算子,A*为A的共轭算子,证明证明 先证若T是Hilbert空间H上的有界线性算子,若T可逆,则T*也可逆,且。事实上,对任意,。这样对任意成立,因此恒成立,进而。同理。这一证明了T*也可逆,且。现在设,则可逆,因此也可逆,从而。同理若,则,这就证明了。证毕。10 设是 到的全连续算子,是到的有界线性算子,则是到的全连续算子
4、。证明 设 是 中有界点列。因为全连续,所以中必有收敛子列。我们记之为。又因为有界,所以也收敛,因此有收敛子列。这就证明了是全连续算子。证毕。11 设A是上线性算子,记,其中,证明A是全连续的。证明 若,定义:则是有界秩算子,且所以。由本章3定理2,A是全连续算子。证毕。12 的符号同第11题。作上算子U。证明U是上全连续算子且。证明 若,则。令,则是有限秩算子,且 所以。这样U是有限秩算子的极限,U必是全连续算子。由于全连续算子的非零谱都是特征值,因此要证,只要证U无非零特征值。倘若,。即。则,由此可得。因此不是U的特征值。证毕。13设 , 求A的特征值和特征函数。(提示:记 )解 记。设为
5、对应特征值的特征函数,则,即。若,则。代入c的表达式:,解得。因此非零特征值,特征函数为,其中为任意非零常数。若,则,特征函数为中任意非零函数。14 积分算子的核为, 其中 为线性无关的函数组,则其非零特征值相应的特征向量e有形式 , 是常数。若记 ,则可由下式决定:。证明 。若为A的特征值,为对应的特征向量,则。即,其中。将代入表达式得。即,。证毕。15 在14题中,若。试求特征值和特征函数。解 采用14题的符号,因为,所以,。这样决定的方程组。变为 ,。因此就是此积分算子的全体非零特征值。对应每一个,其相应的特征函数为。显然由成的有限维线性子空间M的正交补空间中任一非零函数都是相应于0的特征函数。16 若,求积分算子K 的特征值和特征函数。 解 。令 可验证。因此积分算子K有两个非零特值。其中相应于特征函数为,相应于特征函数为。如15 题,0相应的特征函数为中非零函数。17 解方程。解 。设为的完全规正交系,则由本章5定理1,方程解为 。但,因此所以是积分方程的解。本题及第16题也可以用待定系数法直接解得。18 解方程。 解 。设为的完全规正交系,由本章5定理1,因此为本积分方程的解。