《初中数学八年级秋季班-第17讲:垂直平分线、角平分线及轨迹-马秋燕.docx》由会员分享,可在线阅读,更多相关《初中数学八年级秋季班-第17讲:垂直平分线、角平分线及轨迹-马秋燕.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级秋季班垂直平分线、角平分线及轨迹内容分析利用线段的垂直平分线和角平分线的性质添加辅助线,解决相关角度与边长之间的关系是几何证明中又一个重点内容,更加完善了证明边角关系的知识体系知识结构模块一:线段的垂直平分线知识精讲1、 线段的垂直平分线:(1) 线段的垂直平分线的性质定理给我们提供了证明两条线段相等的又一个重要的方法,而且在已知中有线段的垂直平分线时,往往在线段的垂直平分线上选择适当的点添加线段;(2) 线段的垂直平分线性质定理的逆定理,是证明某个点在某条线上的一个重要方法;(3) 利用以上两个定理可以得到:三角形三边的垂直平分线交于一点,且这点到三角形三个顶点的距离相等例题解析ABC
2、DE【例1】 如图,在ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,BCE的周长等于18cm,则AC的长等于_【难度】【答案】【解析】【例2】 已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE【难度】【答案】【解析】【例3】 在ABC中,AB=AC,BC=12,BAC=120,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N(1)求AEN的周长(2)求EAN的度数(3)判断AEN的形状【难度】ABCDENM【答案】【解析】ABCD【例4】 如图,D是线段AB、AC的垂直平分线的交点,若BAC=50,求BDC的度数【难度】【答案】【解析】ABC
3、DE【例5】 如图,已知ABC中,AB=AC,AB的垂直平分线DE交BC于点D,且DC=AC,求ABC各角的度数【难度】【答案】【解析】【例6】 在ABC中,AB=AC,AB的垂直平分线与边AC所在的直线相交所成锐角为50,ABC的底角B的大小为_【难度】【答案】【解析】ABCEFD【例7】 如图,在三角形ABC中,AD是BAC的角平分线,ABDE,DFAC,垂足分别为E、F,求证:AD是EF的垂直平分线【难度】【答案】【解析】ABCDEF【例8】 如图,三角形ABC中,ACB=90,D是AB边上的点,BD=BC,过点D作AB的垂线交AC于点E,CD交BE于点F,求证:BE垂直平分CD【难度】
4、【答案】【解析】ABCDEFG【例9】 如图,在直角三角形ABC中,ABC=90,D是AB边上的点,AD的垂直平分线EF交AC于点E,垂足为F,ED的延长线与CB的延长线交于点G,求证:点E在GC的垂直平分线上【难度】【答案】【解析】ABCDEFMGN【例10】 如图,在ABC中,A=30,DE垂直平分AB,FM垂直平分AD,GN垂直平分BD,求证:AF=FG=BG【难度】【答案】【解析】【例11】 如图,在ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,A=40,(1)求NMB的大小;(2)如果将(1)中的度数改为70,其余条件不变,再求NMB的度数;(3)若A=,你发
5、现了怎样的规律,并证明之;(4)将(1)中的A 改为钝角,对这个问题规律性的认识是否要加以修改ABCMNACNMB【难度】【答案】【解析】 模块二:角平分线知识精讲2、 角平分线:(1) 角的平分线性质定理给我们提供了证明两条线段相等的由一个重要的方法,而且在已知中有角平分线时,往往在角的平分线上选择适当的点向角的两边作垂线段;(2) 角平分线性质定理的逆定理,是证明两个角相等的一个重要方法;(3) 利用以上两个定理可以得到:三角形三个角的平分线交于一点,且这点到三角形三条边的距离相等例题解析【例12】 如图,已知点P到AE、AD、BC的距离相等,则下列说法:点P在BAC的平分线上;点P在CB
6、E的平分线上;点P在BCD的平分线上;点P是BAC、CBE、BCD的平分线的交点,其中正确的是()ABCPEDABCD【难度】【答案】【解析】ABCDE【例13】 如图,已知在四边形ABCD中,ABCD,E为BC中点,连接AE、DE,DE平分ADC,求证:AE平分BAD【难度】【答案】【解析】ABCD【例14】 如图,已知在四边形ABCD中,对角线BD平分ABC,且BAD与BCD互补,求证:AD=CD【难度】【答案】【解析】ABCDMFNP【例15】 已知:如图,PA、PC分别是ABC外角MAC和NCA平分线,它们交于P,PDBM于D,PFBN于F,求证:BP为MBN的平分线【难度】【答案】【
7、解析】【例16】 (1)如图1ABC中,ABC和ACB的角平分线相交于点P,则有:;(2)如图2:ABC中,ABC的外角角平分线和ACB的外角角平分线相交于点P,则有:;ABCP图1ABCP图2ABCP图3(3)如图3:ABC中,ABC和ACB的外角角平分线相交于点P,则有:【难度】【答案】【解析】【例17】 如图,在直角ABC中,C=90,直角ABP中,BAP=90,ABCEPO已知CBO=ABP,BP交AC于点O,E为AC上一点,且AE=OC,求证:PEAO【难度】【答案】【解析】ABCDFGE【例18】 如图,在平行四边形ABCD中,E、F分别是AD、AB上的点,且BE=DF,BE与DF
8、交于点G,求证:GC平分BGD【难度】【答案】【解析】ABCDEFG【例19】 如图,在直角ABC中,AD是斜边BC上的高,BF平分ABC,交AC于点F、AD于点E,EGBC交AC于点G,求证:AF=CG【难度】【答案】【解析】【例20】 如图,以ABC两边AB、AC为边,向外作等边ABD和等边ACE,连接BE、CD交于F点,CD交AB于点G,BE交AC于点H,求证:AF平分DFEABCDEFGH【难度】【答案】【解析】【例21】 如图,在ABC中,CAB和ABC的平分线AD、BE交于点P,连接CP(1) 求证:CP平分ACB;(2) 如图1,当ABC为等边三角形时,求证:EP=DP;ABCD
9、E图1P图2ABCDEP(3) 如图2,当ABC不是等边三角形,但ACB=60,(2)中的结论是否还成立?若成立,请证明;若不成立,请说明理由【难度】【答案】【解析】模块三:综合例题解析ABCDEFP【例22】 已知,如图AP、BP分别平分DAB、CBA,PE、PF分别垂直AD、BC,垂足为E、F求证:点P在EF的垂直平分线上【难度】【答案】【解析】ABCDEHMF【例23】 已知:如图,ABC中,BAC=64,B=38,AD平分BAC,M是BC延长线上的一点,过点M作MFAD,垂足为点H,交AB、AC于点F、E求M的度数【难度】【答案】【解析】【例24】 已知:如图,D是ABC的边AC上的一
10、点,过D作DEAB,DFBC,垂足为E、F,再过点D作DGAB,交BC于点G,且DE=DF求证:(1)DG=BG;ABCDEFG(2)BD垂直平分EF【难度】【答案】【解析】【例25】 如图,在ABC中,OE、OF分别是边AB、AC的垂直平分线,OBC、OCB的平分线相交于点G,判断OG与BC的位置关系,并证明你的判断FABCGOE【难度】【答案】【解析】【例26】 已知,ACBC,AD平分BAC,DEAB,判断下面四个结论中哪些成立,ABCDE(1)AD平分CDE;(2)BAC=BDE;(3)DE平分ADB;(4)BD+ACAB哪些不成立,成立的说明理由,不成立的在原有条件的基础上,添加条件
11、使之成立,并证明【难度】【答案】【解析】【例27】 如图,AD是等腰ABC底边上的高,E、F为AD上两点,且ABE=EBF=FBC,联结CF并延长交AB于点G,求证:(1)GBF为等腰三角形;(2)GEBFABCDEFG【难度】【答案】【解析】 模块四:轨迹知识精讲点的轨迹:符合某些条件的所有的点的集合三个基本轨迹:(1) 和一条线段的两个端点距离相等的点的轨迹是这条线段的垂直平分线;(2) 在一个角的内部(包括顶点)且到这个角两边的距离相等的点的轨迹是这个角的平分线;(3) 到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆例题解析【例28】 (1)经过点A、B的圆的圆心的轨迹
12、是_;(2)到直线m距离等于a的点的轨迹是_;(3)以线段AB为腰,点B为底角顶点的等腰三角形另一顶点的轨迹是_【难度】【答案】【解析】【例29】 以下说法中错误的是()A 到定点距离等于定长的点的轨迹是以定点为圆心定长为半径的圆B 如果P是AOB内一点,点M、N分别在OA、OB上,PMOA于点M,PNOB于点N,且PM=PN,那么射线OP是AOB的平分线C 底边为定长的等腰三角形的顶点的轨迹是底边的垂直平分线D 经过P、Q两点的圆的圆心的轨迹是PQ的垂直平分线【难度】【答案】【解析】ABC【例30】 在ABC内找一点P,使它到ABC的三个顶点的距离都相等【难度】【答案】【解析】【例31】 作
13、图:(1) 已知线段a、b,求做直角ABC,使得C=90,AB=b,BC=a;(2) 已知AOB,点P及线段a,求作点Q,使得点Q到OA、OB的距离相等,且PQ=a【难度】【答案】ABC(2)【解析】随堂检测【习题1】 以下说法错误的是()A 如果PA=PB,那么点P在线段AB的垂直平分线上B 如果点P在线段AB的垂直平分线上,那么点P到线段AB两端距离相等C 如果点P在AOB的内部且到OA、OB距离相等,那么射线OP是AOB的角平分线D 如果OP是AOB的平分线,那么点P到OA、OB上两点M、N的距离相等,即PM=PN【难度】【答案】【解析】ABCD【习题2】 如图在ABC中,B=115,A
14、C的垂直平分线与AB交于点D,且ACDBCD=53,则BDC =_【难度】【答案】【解析】【习题3】 如图所示,AB/CD,O为A、C的平分线的交点,OEAC于E,且OE=2,ABCDEO则AB与CD之间的距离等于_【难度】【答案】【解析】【习题4】 作图:(1) 到点A的距离等于a的点的轨迹;(2) 到两条相交直线AB、CD距离相等的点的轨迹【难度】【答案】BCD(2)OA(1)【解析】ABCDE【习题5】 如图,ABC中,AB=AC=8cm,A=50,线段AB的垂直平分线分别交AB于点D,交AC于点E,BC=3cm,求:(1)EBC的度数;(2)BEC的周长【难度】【答案】【解析】ABPE
15、FC【习题6】 如图,AE是ABC的角平分线,AE的垂直平分线与BC的延长线相交于点F,若CAF=50,求B的度数【难度】【答案】【解析】【习题7】 如图,ABC中,ACB=90,AC=BC,D为ABC外一点,且AD=BD,ABCDEDEAC交CA的延长线于E,求证:DE=AE+BC【难度】【答案】【解析】【习题8】 如图,正方形ABCD中,E是边AB上的任意一点,F是边BC延长线上的一点,EF交CD于点G,AE=CF,(1)求证:点D在线段EF的垂直平分线上;(2)如果EF交正方形的对角线BD于点P,BP=BE,求证:EP=FGABCDEPGF【难度】【答案】【解析】ACBHEFGP【习题9
16、】 如图,BAC和CBF的平分线相交于点P,联结CP,分别过点B、C作PC、PB的垂线交AC、AB的延长线于E,F,G,H为垂足,求证:BF=CE【难度】【答案】【解析】ABCDEFG【习题10】 已知:如图,正方形ABCD中,E、F分别是AD、DC上的点,EBF=45,BGEF,求证:BE=EG【难度】【答案】【解析】【习题11】 如图,在平行四边形ABCD中,E、F分别是AD、AB上的点,BE与DF交于点G,GC平分BGD. ABCDGFE求证:BE=DF【难度】【答案】【解析】课后作业【作业1】 已知点I是ABC三内角平分线的交点,则点I()A到ABC三边距离相等;B到ABC三个顶点距离
17、相等;C是ABC三边上的高的交点;D是ABC三边中线的交点【难度】【答案】【解析】【作业2】 (1)到x轴的距离为到y轴距离的两倍的点的轨迹是_;(2)底边为5厘米的等腰三角形的顶点的轨迹_【难度】【答案】【解析】【作业3】 ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么DBC的周长是_【难度】【答案】【解析】【作业4】 如图,已知ABC中,ABC=90,AD平分BAC,BEAC于点E,DFAC于点F,EF=1,则点F到BC的距离为_ABCDEF【难度】【答案】【解析】【作业5】 作图:(1)以线段BC为底边的等腰三角形的顶点A的轨迹;(2)到直线l的距离等于2c
18、m的点的轨迹【难度】【答案】【解析】(1)BCl(2)【作业6】 已知:如图,ABC中,ACB=90,D是BC延长线上一点,E是AB上一点,且在BD的垂直平分线EG上,DE交AC于F,求证:E在AF的垂直平分线上FABCDEG1324【难度】【答案】【解析】ABCDE【作业7】 如图,已知:ABC中,AB=CB,D在AC上,且,AB=AD,ABC=108,过A作AEBC,交ABD的平分线于E,联结CE,求证:BD垂直平分EC.【难度】【答案】【解析】【作业8】 在ABC中,A=,AC、AB的垂直平分线交于点O,求BOC的度数(用含的式子表示)【难度】【答案】【解析】【作业9】 已知:等边ABC
19、的边长为4,D是边BC上的一个动点(与BC不重合),联结AD,作AD的垂直平分线分别与边AB、AC交于点E、F,(1) 求BDE和DCF的周长和;(2) 设CD的长为x,BDE的周长为y,求y关于x的函数关系式,并写出定义域ABCDFE【难度】【答案】【解析】【作业10】 如图,已知在ABC中,ABC和ACB的平分线交于点D,过点D作EFBC,交AB于点E,交AC于点F(1) 求证:EF=BE+CF;(2) 当点D为ABC的角平分线和ACB的外角的角平分的交点,EF、BE、CF的关系又如何;请证明ABCDEFABCDEFABCDEF(3) 当点D为ABC的外角平分线和ACB的外角的角平分的交点,EF、BE、CF的关系又如何;请直接写出结论【难度】【答案】【解析】 22 / 22